留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重型机械臂电液系统的神经网络辨识与反步控制

刘汇 王恒升 郭新平 孙晓宇

刘汇,王恒升,郭新平, 等. 重型机械臂电液系统的神经网络辨识与反步控制[J]. 机械科学与技术,2023,42(11):1767-1777 doi: 10.13433/j.cnki.1003-8728.20220104
引用本文: 刘汇,王恒升,郭新平, 等. 重型机械臂电液系统的神经网络辨识与反步控制[J]. 机械科学与技术,2023,42(11):1767-1777 doi: 10.13433/j.cnki.1003-8728.20220104
LIU Hui, WANG Hengsheng, GUO Xinping, SUN Xiaoyu. Neural Network Identification and Backstepping Control ofElectro-hydraulic Cylinder for A Heavy-duty Manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1767-1777. doi: 10.13433/j.cnki.1003-8728.20220104
Citation: LIU Hui, WANG Hengsheng, GUO Xinping, SUN Xiaoyu. Neural Network Identification and Backstepping Control ofElectro-hydraulic Cylinder for A Heavy-duty Manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1767-1777. doi: 10.13433/j.cnki.1003-8728.20220104

重型机械臂电液系统的神经网络辨识与反步控制

doi: 10.13433/j.cnki.1003-8728.20220104
详细信息
    作者简介:

    刘汇(1996−),硕士,研究方向为机电系统动力学建模与控制,852778509@qq.com

    通讯作者:

    王恒升,教授,博士研究生导师,whsheng@csu.edu.cn

  • 中图分类号: TP273

Neural Network Identification and Backstepping Control ofElectro-hydraulic Cylinder for A Heavy-duty Manipulator

  • 摘要: 针对重型机械臂的电液驱动系统因非线性、参数时变等因素引起的控制精度下降问题,提出了一种基于RBF神经网络辨识动态负载的反步控制策略。以某锚杆钻车重型机械臂的电液系统为例,建立了系统的数学模型,将其分解为系统内部状态反馈、控制器驱动及外部负载驱动这3个动力学部分。考虑电液系统内部参数变化的缓慢性,通过离线辨识的方法,得到系统内部状态反馈中的标称模型参数。控制器的设计采用反步法,其输出计算需要对外部负载进行辨识,对此采用RBF神经网络进行动态负载辨识,辨识与控制的动态过程及设计原则依据Lyapunov稳定性原理。仿真与实验结果表明:所设计的控制算法有效提高了机械臂的位置跟踪精度,具有响应速度快、轨迹误差小的特点;控制器输出的控制量也相对较小和平滑。
  • 图  1  锚杆钻车机械臂示意图

    Figure  1.  Bolt drilling truck's manipulator structure

    图  2  机械臂电液系统示意图

    Figure  2.  Manipulator's electrohydraulic system

    图  3  RBF神经网络结构

    Figure  3.  RBF neural network structure

    图  4  RBF神经网络反步控制系统结构

    Figure  4.  RBF neural network's backstepping control system

    图  5  锚杆钻车机械臂电液系统仿真模型

    Figure  5.  Simulation model of bolt drilling truck manipulator of an electro-hydraulic system

    图  6  五次多项式轨迹位置跟踪仿真

    Figure  6.  5th polynomial trajectory position tracking simulation

    图  7  仿真图6对应的位置跟踪误差

    Figure  7.  Position tracking error in Figure 6

    图  8  仿真图6对应的控制器输出

    Figure  8.  Controller output in Figure 6

    图  9  仿真图6对应的神经网络的输出

    Figure  9.  Neural network output in Figure 6

    图  10  正弦轨迹位置跟踪仿真

    Figure  10.  Sinusoidal trajectory position tracking simulation

    图  11  仿真图10对应的位置跟踪误差

    Figure  11.  Position tracking error in Figure 10

    图  12  仿真图10对应的控制器输出

    Figure  12.  Controller output in Figure 10

    图  13  仿真图10对应的神经网络的输出

    Figure  13.  Neural network output in Figure 10

    图  14  锚杆钻车机械臂实验平台

    Figure  14.  Bolt drilling truck's manipulator experimentalplatform

    图  15  五次多项式轨迹位置跟踪实验结果

    Figure  15.  5th polynomial trajectory position trackingexperimental results

    图  16  实验图15对应的的跟踪误差

    Figure  16.  Position tracking error in Figure 15

    图  17  实验图15对应的控制器输出

    Figure  17.  Controller output in Figure 15

    图  18  正弦轨迹位置跟踪实验结果

    Figure  18.  Sinusoidal trajectory position tracking experimental results

    图  19  实验图18对应的的跟踪误差

    Figure  19.  Position tracking error in Figure 18

    图  20  实验图18对应的控制器输出

    Figure  20.  Controller output in Figure 18

    表  1  机械臂电液系统参数表

    Table  1.   Manipulator's electro-hydraulic system's parameters

    参数数值
    机械臂转动惯量/(kg·m25 718
    平均有效面积At/m26.440×10−3​​​​​​
    活塞行程/m0.28
    惯性负载质量/kg1200
    黏性阻尼系数Bp/(Ns·m−12.25×106
    液压缸等效总容积Vt/m31.803×10−3​​​​​​​​​​​​
    油液弹性模量βe/Pa7×108
    比例阀的流量增益kq/[(m3·s−1)·A−1]1.667×10−3​​​​​​
    下载: 导出CSV

    表  2  五次多项式轨迹位置跟踪实验误差对比

    Table  2.   5th polynomial trajectory position tracking experimental error comparison mm

    控制方法最大值最小值均方根误差稳态误差
    PID控制器7.49− 4.842.430.85
    RBF神经网
    络反步控制
    2.11− 2.340.730.17
    下载: 导出CSV

    表  3  正弦信号轨迹位置跟踪实验误差对比

    Table  3.   Sinusoidal signal trajectory position tracking experimental error comparison mm

    控制方法最大值最小值均方根误差平均绝对误差
    PID控制器12.14− 7.843.663.03
    RBF神经网
    络反步控制
    7.93− 2.241.390.95
    下载: 导出CSV
  • [1] 赵斌, 权龙, 黄家海, 等. 大型液压铲上车回转驱动系统及特性研究[J]. 机械工程学报, 2017, 53(6): 176-186. doi: 10.3901/JME.2017.06.176

    ZHAO B, QUAN L, HUANG J H, et al. Driven system and characteristics research of large hydraulic shovel swing motion[J]. Journal of Mechanical Engineering, 2017, 53(6): 176-186. (in Chinese) doi: 10.3901/JME.2017.06.176
    [2] 杨健健, 张强, 王超, 等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报, 2020, 45(8): 2995-3005.

    YANG J J, ZHANG Q, WANG C, et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society, 2020, 45(8): 2995-3005. (in Chinese)
    [3] KOVARI A. Effect of leakage in electrohydraulic servo systems based on complex nonlinear mathematical model and experimental results[J]. Acta Polytechnica Hungarica, 2015, 12(3): 129-146.
    [4] 严骏, 黎波, 郭刚, 等. 基于Hammerstein模型的挖掘臂伺服系统参数辨识[J]. 兵工学报, 2012, 33(12): 1527-1532.

    YAN J, LI B, GUO G, et al. Parameter identification of servo system for excavator arm based on Hammerstein model[J]. Acta Armamentarii, 2012, 33(12): 1527-1532. (in Chinese)
    [5] SHEN J X, CUI H X, FENG K, et al. Parameter identification and control algorithm of electrohydraulic servo system for robotic excavator based on improved Hammerstein model[J]. Mathematical Problems in Engineering, 2020, 2020: 9216019.
    [6] YUAN H B, NA H C, KIM Y B. System identification and robust position control for electro-hydraulic servo system using hybrid model predictive control[J]. Journal of Vibration and Control, 2018, 24(18): 4145-4159. doi: 10.1177/1077546317721417
    [7] 余臻, 李喆瀚, 刘利军. 电液伺服系统多项式非线性建模与控制一体化设计[J]. 控制理论与应用, 2021, 38(3): 364-372.

    YU Z, LI Z H, LIU L J. Integrated design of polynomial nonlinear modeling and control of electro-hydraulic servo systems[J]. Control Theory & Applications, 2021, 38(3): 364-372. (in Chinese)
    [8] 李文顶, 施光林. 电液伺服系统RBF神经网络滑模控制[J]. 液压与气动, 2019, 43(2): 109-114.

    LI W D, SHI G L. RBF neural network sliding mode control for electro hydraulic servo system[J]. Chinese Hydraulics & Pneumatics, 2019, 43(2): 109-114. (in Chinese)
    [9] 杨旭华. 神经网络及其在控制中的应用研究[D]. 杭州: 浙江大学, 2004

    YANG X H. Study on neural networks machine and its application in control[D]. Hangzhou: Zhejiang University, 2004. (in Chinese)
    [10] 刘金琨. 智能控制[M]. 4版. 北京: 电子工业出版社, 2017

    LIU J K. Intelligent control[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
    [11] 李砚浓, 李汀兰, 姜艺, 等. 基于RBF神经网络自适应PID四旋翼飞行器控制[J]. 控制工程, 2016, 23(3): 378-382.

    LI Y N, LI T L, JIANG Y, et al. Adaptive PID control of quadrotor based on RBF neural network[J]. Control Engineering of China, 2016, 23(3): 378-382. (in Chinese)
    [12] 秦斌, 周浩, 杜康, 等. 基于RBF网络的风电机组变桨距滑模控制[J]. 电工技术学报, 2013, 28(5): 37-41.

    QIN B, ZHOU H, DU K, et al. Sliding mode control of pitch angle based on RBF neural-network[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 37-41. (in Chinese)
    [13] 赵希梅, 金洋洋, 王丽梅. PMLSM伺服系统的自适应RBFNN反推控制[J]. 电机与控制学报, 2020, 24(4): 149-157.

    ZHAO X M, JIN Y Y, WANG L M. Adaptive RBFNN backstepping control for PMLSM servo system[J]. Electric Machines and Control, 2020, 24(4): 149-157. (in Chinese)
    [14] TRAN D T, TRUONG H V A, AHN K K. Adaptive backstepping sliding mode control based RBFNN for a hydraulic manipulator including actuator dynamics[J]. Applied Sciences, 2019, 9(6): 1265. doi: 10.3390/app9061265
    [15] TRAN D T, NGUYEN M N, AHN K K. RBF neural network based backstepping control for an electrohy-draulic elastic manipulator[J]. Applied Sciences, 2019, 9(11): 2237. doi: 10.3390/app9112237
    [16] LU S M, LI D J. Adaptive neural network control for nonlinear hydraulic servo-system with time-varying state constraints[J]. Complexity, 2017, 2017: 6893521.
    [17] DENG P, ZENG L C, LIU Y. RBF neural network backstepping sliding mode adaptive control for dynamic pressure cylinder electrohydraulic servo pressure system[J]. Complexity, 2018, 2018: 4159639.
    [18] GUO Q, ZHANG Y, CELLER B G, et al. Neural adaptive backstepping control of a robotic manipulator with prescribed performance constraint[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3572-3583. doi: 10.1109/TNNLS.2018.2854699
    [19] GUO Q, CHEN Z L. Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty[J]. Mechanical Systems and Signal Processing, 2021, 146: 106869. doi: 10.1016/j.ymssp.2020.106869
    [20] 蔡改贫, 刘鑫, 罗小燕, 等. 改进PSO算法优化的电液位置伺服系统滑模控制[J]. 机械科学与技术, 2019, 38(8): 1223-1230.

    CAI G P, LIU X, LUO X Y, et al. Sliding mode control of electro-hydraulic position servo system optimized by improved PSO algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1223-1230. (in Chinese)
    [21] 何玉彬, 刘艳秋, 徐立勤, 等. 电液伺服系统的神经网络在线自学习自适应控制[J]. 中国电机工程学报, 1998, 18(6): 434-437. doi: 10.3321/j.issn:0258-8013.1998.06.013

    HE Y B, LIU Y Q, XU L Q, et al. Neural network based on linse self learning adaptive control for electro hydraulic servo system[J]. Proceedings of the CSEE, 1998, 18(6): 434-437. (in Chinese) doi: 10.3321/j.issn:0258-8013.1998.06.013
    [22] 刘胜斐, 孙青林, 陈增强, 等. 比例阀控电液系统抗扰换向滞后补偿反步控制[J]. 控制理论与应用, 2020, 37(7): 1521-1534. doi: 10.7641/CTA.2020.80972

    LIU S F, SUN Q L, CHEN Z Q, et al. Switch delay compensation and disturbance rejection control for proportional valve controlled electro-hydraulic system with backstepping method[J]. Control Theory & Applications, 2020, 37(7): 1521-1534. (in Chinese) doi: 10.7641/CTA.2020.80972
    [23] 石胜利, 李建雄, 方一鸣. 具有输入饱和的电液伺服系统反步位置跟踪控制[J]. 中南大学学报(自然科学版), 2016, 47(10): 3369-3374.

    SHI S L, LI J X, FANG Y M. Backstepping position tracking control for electro-hydraulic servo system with input saturation[J]. Journal of Central South University (Science and Technology), 2016, 47(10): 3369-3374. (in Chinese)
    [24] WON D, KIM W, SHIN D, et al. High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 787-795. doi: 10.1109/TCST.2014.2325895
    [25] 龚佩芬. 液压位置伺服系统的模型辨识和滑模变结构控制[D]. 西安: 西安理工大学, 2017

    GONG P F. Research on model identification and sliding mode variable structure control of hydraulic position servo system[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  85
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回