留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度卷积胶囊网络在刀具破损监测中的应用

吴琪文 周学良 吴瑶

吴琪文,周学良,吴瑶. 多尺度卷积胶囊网络在刀具破损监测中的应用[J]. 机械科学与技术,2023,42(11):1895-1903 doi: 10.13433/j.cnki.1003-8728.20220103
引用本文: 吴琪文,周学良,吴瑶. 多尺度卷积胶囊网络在刀具破损监测中的应用[J]. 机械科学与技术,2023,42(11):1895-1903 doi: 10.13433/j.cnki.1003-8728.20220103
WU Qiwen, ZHOU Xueliang, WU Yao. Application of Multi-scale Convolutional Capsule Network in Tool Breakage Monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1895-1903. doi: 10.13433/j.cnki.1003-8728.20220103
Citation: WU Qiwen, ZHOU Xueliang, WU Yao. Application of Multi-scale Convolutional Capsule Network in Tool Breakage Monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1895-1903. doi: 10.13433/j.cnki.1003-8728.20220103

多尺度卷积胶囊网络在刀具破损监测中的应用

doi: 10.13433/j.cnki.1003-8728.20220103
基金项目: 国家自然科学基金项目(52075107)、湖北省高等学校优秀中青年科技创新团队计划项目(T2020018)、第64批中国博士后科学基金项目(2018M6409120)及湖北汽车工业学院博士科研启动基金项目(BK201601)
详细信息
    作者简介:

    吴琪文(1996−),硕士研究生,研究方向为智能制造,505571455@qq.com

    通讯作者:

    周学良,教授,硕士生导师,zhouxl@huat.edu.cn

  • 中图分类号: TH165.4

Application of Multi-scale Convolutional Capsule Network in Tool Breakage Monitoring

  • 摘要: 刀具状态监测是实现加工过程智能化的关键技术之一,其状态直接影响到工件的表面质量和加工效率。在切削加工过程中刀具的细微崩刃不易察觉但却对工件表面质量影响较大,针对该问题提出了一种基于多尺度卷积胶囊网络的方法实现刀具破损状态监测。首先通过采集振动信号来表征刀具的状态,然后在模型中通过多尺度卷积层初步提取信号特征,随后将特征胶囊化输入胶囊层中进一步挖掘特征中的隐藏信息,最终通过分类层识别刀具在不同切削参数下是否发生细微崩刃。实验结果表明,该方法能够在噪声环境中准确识别不同切削参数下切削刃是否微崩,并且识别精度优于卷积神经网络(Convolutional neural network, CNN)和宽核卷积神经网络(Convolution neural network with wide first-layer kernels, WDCNN)。
  • 图  1  标量与向量神经元

    Figure  1.  Scalar neurons and vector neurons

    图  2  动态路由更新过程示意图

    Figure  2.  Schematic diagram of the dynamic routing update process

    图  3  MCCN网络结构示意图

    Figure  3.  Diagram of MCCN network structure

    图  4  全新刀具和细微崩刃刀具

    Figure  4.  New tools and slightly chipped tools

    图  5  实验环境和传感器布局图

    Figure  5.  Experimental environment and sensor layout

    图  6  平稳车削时原始信号图

    Figure  6.  Original signals during smooth turning

    图  7  网络参数对模型性能影响

    Figure  7.  Impact of network parameters on model performance

    表  1  MCCN网络结构参数

    Table  1.   MCCN network structural parameters

    结构层核尺寸/步长核数量补零输出形状
    Conv164 × 1/8 × 116No(249,16)
    Conv23 × 1/2 × 132No(124,32)
    Conv33 × 1/2 × 132No(61,32)
    FlattenNo(1,1 952)
    Digit capsNo(244,8)
    Caps2 predictedNo(244,2,10,1)
    Caps2 outputNo(1,2,10,1)
    Dense1No
    Dense2No
    Decoder outputNo
    下载: 导出CSV

    表  2  CNN网络结构参数

    Table  2.   CNN network structural parameters

    结构层核尺寸/步长核数量补零输出形状
    Conv15 × 5/132No(36,21,32)
    Pool12 × 2/216No(18,10,32)
    Conv25 × 5/264No(7,3,64)
    Pool22 × 2/216No(3,1,64)
    Dense2561No
    Dense641No
    Softmax21No
    下载: 导出CSV

    表  3  WDCNN网络结构参数

    Table  3.   WDCNN network structural parameters

    结构层核尺寸/步长核数量补零输出形状
    Conv164 × 1/16 × 116Yes(125,16)
    Pool12 × 1/2 × 116No(62,16)
    Conv23 × 1/2 × 132Yes(60,32)
    Pool22 × 1/2 × 132No(30,32)
    Conv33 × 1/2 × 164Yes(28,64)
    Pool32 × 1/2 × 164No(14,64)
    Conv43 × 1/2 × 164Yes(12,64)
    Pool42 × 1/2 × 164No(6,64)
    Conv53 × 1/2 × 164No(4,64)
    Pool52 × 1/2 × 164No(2,64)
    Dense1001
    Softmax21
    下载: 导出CSV

    表  4  对比结果

    Table  4.   Comparison results

    模型名称MCCNCNNWDCNN
    测试集准确度/%99.9750.1898.97
    损失值0.00230.69310.1570
    下载: 导出CSV
  • [1] 刘献礼, 李雪冰, 丁明娜, 等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报, 2021, 57(10): 196-219. doi: 10.3901/JME.2021.10.196

    LIU X L, LI X B, DING M N, et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering, 2021, 57(10): 196-219. (in Chinese) doi: 10.3901/JME.2021.10.196
    [2] ZHOU Y Q, XUE W. Review of tool condition monitoring methods in milling processes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8): 2509-2523. doi: 10.1007/s00170-018-1768-5
    [3] CHO S, ASFOUR S, ONAR A, et al. Tool breakage detection using support vector machine learning in a milling process[J]. International Journal of Machine Tools and Manufacture, 2004, 45(3): 241-249.
    [4] HUANG P B, MA C C, KUO C H. A PNN self-learning tool breakage detection system in end milling operations[J]. Applied Soft Computing, 2015, 37: 114-124. doi: 10.1016/j.asoc.2015.08.019
    [5] RMILI W, OUAHABI A, SERRA R, et al. An automatic system based on vibratory analysis for cutting tool wear monitoring[J]. Measurement, 2016, 77: 117-123. doi: 10.1016/j.measurement.2015.09.010
    [6] SUN S X, HU X F, CAI W L, et al. Tool breakage detection of milling cutter insert based on SVM[J]. IFAC-PapersOnLine, 2019, 52(13): 1549-1554. doi: 10.1016/j.ifacol.2019.11.420
    [7] HEINEMANN R, HINDUJA S. A new strategy for tool condition monitoring of small diameter twist drills in deep-hole drilling[J]. International Journal of Machine Tools and Manufacture, 2011, 52(1): 69-76.
    [8] AKBARI A, DANESH M, KHALILI K. A method based on spindle motor current harmonic distortion measurements for tool wear monitoring[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(12): 5049-5055. doi: 10.1007/s40430-017-0762-4
    [9] XU G D, ZHOU H C, CHEN J H. CNC internal data based incremental cost-sensitive support vector machine method for tool breakage monitoring in end milling[J]. Engineering Applications of Artificial Intelligence, 2018, 74: 90-103. doi: 10.1016/j.engappai.2018.05.007
    [10] LI G, YANG X, CHEN D B, et al. Tool breakage detection using deep learning[C]//2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD). Yonago: IEEE, 2018: 37-42
    [11] LI X L. Detection of tool flute breakage in end milling using feed-motor current signatures[J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 491-498. doi: 10.1109/3516.974863
    [12] XU G D, CHEN J H, ZHOU H C. A tool breakage monitoring method for end milling based on the indirect electric data of CNC system[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1): 419-434.
    [13] 王向阳, 何岭松, 王平江, 等. 基于VMD的铣刀破损检测[J]. 振动与冲击, 2020, 39(16): 135-140. doi: 10.13465/j.cnki.jvs.2020.16.019

    WANG X Y, HE L S, WANG P J, et al. Milling cutter breakage detection based on VMD[J]. Journal of Vibration and Shock, 2020, 39(16): 135-140. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.16.019
    [14] RATAVA J, LOHTANDER M, VARIS J. Tool condition monitoring in interrupted cutting with acceleration sensors[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47: 70-75. doi: 10.1016/j.rcim.2016.11.008
    [15] SERIN G, SENER B, OZBAYOGLU A M, et al. Review of tool condition monitoring in machining and opportunities for deep learning[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(3): 953-974.
    [16] DURO J A, PADGET J A, BOWEN C R, et al. Multi-sensor data fusion framework for CNC machining monitoring[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 505-520. doi: 10.1016/j.ymssp.2015.04.019
    [17] AMBADEKAR P K, CHOUDHARI C M. CNN based tool monitoring system to predict life of cutting tool[J]. SN Applied Sciences, 2020, 2(5): 860. doi: 10.1007/s42452-020-2598-2
    [18] ANTIĆ A, POPOVIĆ B, KRSTANOVIĆ L, et al. Novel texture-based descriptors for tool wear condition monitoring[J]. Mechanical Systems and Signal Processing, 2018, 98: 1-15. doi: 10.1016/j.ymssp.2017.04.030
    [19] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017
    [20] XI E, BING S, JIN Y. Capsule network performance on complex data[J]. arXiv preprint arXiv: 1712.03480v1, 2017
    [21] ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425
    [22] KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2015
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回