留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺栓接头界面迟滞行为分析

宫明光 刘文光 杨洋

宫明光,刘文光,杨洋. 螺栓接头界面迟滞行为分析[J]. 机械科学与技术,2023,42(9):1416-1422 doi: 10.13433/j.cnki.1003-8728.20220101
引用本文: 宫明光,刘文光,杨洋. 螺栓接头界面迟滞行为分析[J]. 机械科学与技术,2023,42(9):1416-1422 doi: 10.13433/j.cnki.1003-8728.20220101
GONG Mingguang, LIU Wenguang, YANG Yang. Analysis of Hysteresis Behavior of Bolted Joint Interface[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1416-1422. doi: 10.13433/j.cnki.1003-8728.20220101
Citation: GONG Mingguang, LIU Wenguang, YANG Yang. Analysis of Hysteresis Behavior of Bolted Joint Interface[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1416-1422. doi: 10.13433/j.cnki.1003-8728.20220101

螺栓接头界面迟滞行为分析

doi: 10.13433/j.cnki.1003-8728.20220101
基金项目: 江西省自然科学基金重点项目(20224ACB204015)
详细信息
    作者简介:

    宫明光(1997−),硕士研究生,研究方向为预紧连接件动力学建模,897593787@qq.com

    通讯作者:

    刘文光,教授,博士,liuwg14@nchu.edu.cn

  • 中图分类号: TH131.1

Analysis of Hysteresis Behavior of Bolted Joint Interface

  • 摘要: 切向载荷作用下,螺栓接头界面随切向位移增大表现出明显的变阻尼和刚度软化特性。为有效表示接头界面的迟滞特性,旨在研究一种新的螺栓接头界面建模方法。基于Iwan模型,将预紧力产生在接头界面的正压力转换成切向力的均匀密度函数,建立螺栓接头界面的切向加载曲线与非线性迟滞回线理论模型。通过与原有的实验结果比较,验证了加载曲线与迟滞回线的正确性,并探讨了不同参数对迟滞回线的影响。结果表明,临界切向位移、初始刚度对迟滞回线的变化影响较为明显,残余刚度对迟滞行为影响主要体现在宏观滑移阶段。该模型可以有效地表达螺栓连接的复杂非线性特征,准确再现结合面的迟滞现象以及刚度软化现象。
  • 图  1  螺栓连接结构示意图

    Figure  1.  Schematic diagram of the bolted joint structure

    图  2  经典Iwan模型示意图

    Figure  2.  Schematic diagram of the classical Iwan model

    图  3  切向载荷下螺栓结合面滑移过程

    Figure  3.  The slippage process of the bolted interface under circumferential load

    图  4  结合面压力分布简化示意图

    Figure  4.  Simplified diagram of pressure distribution on the interface

    图  5  均匀密度分布函数示意图

    Figure  5.  Schematic diagram of the uniform density distribution function

    图  6  刚度软化曲线

    Figure  6.  The stiffness softening curv

    图  7  不同λ值对迟滞回线的影响

    Figure  7.  The influence of different λ values on the hysteresis loop

    图  8  理论模型与文献[24-25]实验对比

    Figure  8.  Comparison between the theoretical model and experimental results from the literature [24-25]

    图  9  不同临界切向位移对迟滞回线影响

    Figure  9.  The influence of different critical circumferential displacements on the hysteresis loop

    图  11  不同残余刚度对迟滞回线影响

    Figure  11.  The influence of different residual stiffnesses on the hysteresis loop

    图  10  不同初始刚度对迟滞回线影响

    Figure  10.  The influence of different initial stiffnesses on the hysteresis loop

    表  1  模型验证参数值

    Table  1.   Model validation parameter values

    曲线KT/108(N·m−1KC/106(N·m−1ϕm/μm
    切向加载曲线[24] 7.41 21.9 13.83
    迟滞回线[25] 2.04 3.78 1.25
    下载: 导出CSV

    表  2  迟滞回线参数值

    Table  2.   Hysteresis loop parameter values

    KT/108(N·m−1KC/106(N·m−1ϕm/μm
    2.610120
    2.810120
    310120
    2.620120
    2.630120
    2.610180
    2.610240
    下载: 导出CSV
  • [1] 曹军义, 刘清华, 洪军. 螺栓连接微观摩擦到宏观动力学研究综述[J]. 中国机械工程, 2021, 32(11): 1261-1273. doi: 10.3969/j.issn.1004-132X.2021.11.001

    CAO J Y, LIU Q H, HONG J. Overview of micro friction to macro dynamics for bolted connections[J]. China Mechanical Engineering, 2021, 32(11): 1261-1273. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.11.001
    [2] WOODHOUSE J. Linear damping models for structural vibration[J]. Journal of Sound and Vibration, 1998, 215(3): 547-569. doi: 10.1006/jsvi.1998.1709
    [3] IWAN W D. On a class of models for the yielding behavior of continuous and composite Systems[J]. Journal of Applied Mechanics, 1967, 34(3): 612-617. doi: 10.1115/1.3607751
    [4] DE WIT C C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425. doi: 10.1109/9.376053
    [5] VALANIS K C. Fundamental consequences of a new intrinsic time measure plasticity as a limit of the endochronic theory[J]. Archives of Mechanics, 1980, 32: 68.
    [6] 占旺龙, 李卫, 黄平. 基于Iwan模型的接合面切向响应建模[J]. 力学学报, 2020, 52(2): 462-471. doi: 10.6052/0459-1879-19-343

    ZHAN W L, LI W, HUANG P. Tangential response modeling of joint surface based on Iwan model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 462-471. (in Chinese) doi: 10.6052/0459-1879-19-343
    [7] 李朝峰, 乔瑞环, 苗雪阳, 等. 螺栓连接界面非线性建模及其参数辨识方法研究[J]. 机械工程学报, 2021, 57(7): 78-86. doi: 10.3901/JME.2021.07.078

    LI C F, QIAO R H, MIAO X C, et al. Investigation on nonlinear modeling and model parameters identification of the interface of bolted joints[J]. Journal of Mechanical Engineering, 2021, 57(7): 78-86. (in Chinese) doi: 10.3901/JME.2021.07.078
    [8] JAMIA N, JALALI H, TAGHIPOUR J, et al. An equivalent model of a nonlinear bolted flange joint[J]. Mechanical Systems and Signal Processing, 2021, 153: 107507. doi: 10.1016/j.ymssp.2020.107507
    [9] AHMADIAN H, MOHAMMADALI M. A distributed mechanical joint contact model with slip/slap coupling effects[J]. Mechanical Systems and Signal Processing, 2016, 80: 206-223. doi: 10.1016/j.ymssp.2016.04.018
    [10] LACAYO R, PESARESI L, GROß J, et al. Nonlinear modeling of structures with bolted joints: a comparison of two approaches based on a time-domain and frequency-domain solver[J]. Mechanical Systems and Signal Processing, 2019, 114: 413-438. doi: 10.1016/j.ymssp.2018.05.033
    [11] GAUL L, NITSCHE R. The role of friction in mechanical joints[J]. Applied Mechanics Reviews, 2001, 54(2): 93-106. doi: 10.1115/1.3097294
    [12] SEGALMAN D J. A four-parameter Iwan model for lap-type joints[J]. Journal of Applied Mechanics, 2005, 72(5): 752-760. doi: 10.1115/1.1989354
    [13] SONG Y, HARTWIGSEN C J, MCFARLAND D M, et al. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements[J]. Journal of Sound and Vibration, 2004, 273(1-3): 249-276.
    [14] SEGALMAN D J, STARR M J. Inversion of masing models via continuous Iwan systems[J]. International Journal of Non-Linear Mechanics, 2008, 43(1): 74-80. doi: 10.1016/j.ijnonlinmec.2007.10.005
    [15] LUAN Y, GUAN Z Q, CHENG G D, et al. A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints[J]. Journal of Sound and Vibration, 2012, 331(2): 325-344. doi: 10.1016/j.jsv.2011.09.002
    [16] BISWAS S, CHATTERJEE A. A two-state hysteresis model for bolted joints, with minor loops from partial unloading[J]. International Journal of Mechanical Sciences, 2018, 140: 506-520. doi: 10.1016/j.ijmecsci.2018.03.021
    [17] YUAN P P, REN W X, ZHANG J. Dynamic tests and model updating of nonlinear beam structures with bolted joints[J]. Mechanical Systems and Signal Processing, 2019, 126: 193-210. doi: 10.1016/j.ymssp.2019.02.033
    [18] LI D W, BOTTO D, XU C, et al. A new approach for the determination of the Iwan density function in modeling friction contact[J]. International Journal of Mechanical Sciences, 2020, 180: 105671. doi: 10.1016/j.ijmecsci.2020.105671
    [19] LI D W, XU C, KANG J H, et al. Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures[J]. Nonlinear Dynamics, 2020, 101(1): 255-269. doi: 10.1007/s11071-020-05765-6
    [20] ZHAO B B, WU F Y, SUN K P, et al. Study on tangential stiffness nonlinear softening of bolted joint in friction-sliding process[J]. Tribology International, 2021, 156: 106856. doi: 10.1016/j.triboint.2021.106856
    [21] BEARDS C F. The damping of structural vibration by controlled interfacial slip in joints[J]. Journal of Vibration and Acoustics, 1983, 105(3): 369-373. doi: 10.1115/1.3269115
    [22] MOTOSH N. Determination of joint stiffness in bolted connections[J]. Journal of Engineering for Industry, 1976, 98(3): 858-861. doi: 10.1115/1.3439043
    [23] CAO J B, ZHANG Z S. Finite element analysis and mathematical characterization of contact pressure distribution in bolted joints[J]. Journal of Mechanical Science and Technology, 2019, 33(10): 4715-4725. doi: 10.1007/s12206-019-0913-x
    [24] SEGALMAN D J, GREGORY D L, STARR M J, et al. Handbook on dynamics of jointed structures[J]. Albuquerque: Sandia National Laboratories, 2009
    [25] ERITEN M, POLYCARPOU A A, BERGMAN L A. Physics-based modeling for fretting behavior of nominally flat rough surfaces[J]. International Journal of Solids and Structures, 2011, 48(10): 1436-1450. doi: 10.1016/j.ijsolstr.2011.01.028
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  36
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回