留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ABAQUS二次开发在冷滚打成形参数化建模与仿真研究中的应用

霍永强 李言 崔莅沐 刘迪娜 杨明顺 高伟芳

霍永强,李言,崔莅沐, 等. ABAQUS二次开发在冷滚打成形参数化建模与仿真研究中的应用[J]. 机械科学与技术,2023,42(9):1455-1466 doi: 10.13433/j.cnki.1003-8728.20220100
引用本文: 霍永强,李言,崔莅沐, 等. ABAQUS二次开发在冷滚打成形参数化建模与仿真研究中的应用[J]. 机械科学与技术,2023,42(9):1455-1466 doi: 10.13433/j.cnki.1003-8728.20220100
HUO Yongqiang, LI Yan, CUI Limu, LIU Dina, YANG Mingshun, GAO Weifang. Application of ABAQUS Secondary Development in Parametric Modeling and Simulation of Cold Roll-beating Forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1455-1466. doi: 10.13433/j.cnki.1003-8728.20220100
Citation: HUO Yongqiang, LI Yan, CUI Limu, LIU Dina, YANG Mingshun, GAO Weifang. Application of ABAQUS Secondary Development in Parametric Modeling and Simulation of Cold Roll-beating Forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1455-1466. doi: 10.13433/j.cnki.1003-8728.20220100

ABAQUS二次开发在冷滚打成形参数化建模与仿真研究中的应用

doi: 10.13433/j.cnki.1003-8728.20220100
基金项目: 国家自然科学基金项目(52075437)与西安理工大学博士创新基金项目(310-252072014)
详细信息
    作者简介:

    霍永强(1995−),硕士研究生,研究方向为先进制造技术,hyq19950319 @163.com

    通讯作者:

    李言,教授,博士生导师,jyxy-ly@xaut.edu.cn

  • 中图分类号: TG306

Application of ABAQUS Secondary Development in Parametric Modeling and Simulation of Cold Roll-beating Forming

  • 摘要: 结合冷滚打成形工艺的特点,基于Python语言对有限元分析软件ABAQUS进行二次开发,建立了冷滚打成形有限元模型的参数化建模插件,利用该插件可以对滚打轮和工件的几何模型、复杂材料属性以及打入深度、公转速度、进给速度等工艺参数进行便捷更改,实现冷滚打有限元仿真模型的参数化建立,自动完成几何建模、网格划分、材料属性定义到提交作业等一系列前处理过程,最后使用该插件进行了仿真模拟,并进行了冷滚打试验研究,对不同转速下的仿真成形力和齿形轮廓与试验进行了对比分析。结果显示:仿真所得成形力和齿形轮廓与试验都有相同的变化趋势,并且误差都控制在6%以内,验证了利用该插件建立冷滚打有限元模型的可行性和有效性。
  • 图  1  冷滚打成形原理图

    Figure  1.  Schematic diagram of cold rolling forming

    图  2  滚打轮齿形轮廓

    Figure  2.  Profile of the rotary forging wheel teeth

    图  3  滚打轮绘制流程

    Figure  3.  The process of drawing the rolling wheel

    图  4  工件网格划分

    Figure  4.  Mesh division of the workpiece

    图  5  冷滚打完整成形过程

    Figure  5.  The complete cold rolling forming process

    图  6  定义边界条件

    Figure  6.  Definition of boundary conditions

    图  7  图形界面程序执行流程图

    Figure  7.  Flowchart of graphical interface program execution

    图  8  插件注册窗口

    Figure  8.  Plugin registration window

    图  9  滚打轮模型参数界面

    Figure  9.  Parameter interface for the rolling wheel model

    图  10  工件模型参数界面

    Figure  10.  Parameter interface for the workpiece model

    图  11  装配关系界面

    Figure  11.  Assembly relationship interface

    图  12  冷滚打成形设备

    Figure  12.  Cold rolling forming equipment

    图  13  基恩士VHX-6000超景深三维显微系统

    Figure  13.  Keyence VHX-6000 high-depth-of-field 3D microscopy system

    图  14  试验成形试件

    Figure  14.  Test-formed workpiece

    图  15  转速800 r/min下试验所得三向成形力

    Figure  15.  Three-axis forming forces obtained from the experiment at a rotation speed of 800r/min

    图  16  冷滚打有限元仿真模型

    Figure  16.  Finite element simulation model of cold-roll forming

    图  17  不同转速下的仿真Mises应力云图

    Figure  17.  Simulation Mises stress cloud diagrams at different rotation speeds

    图  18  仿真各向成形力仿真结果

    Figure  18.  Simulation results for various forming forces

    图  19  径向力峰值对比

    Figure  19.  Comparison of peak radial forces

    图  20  路径选取

    Figure  20.  Path selection

    图  21  齿形轮廓变形区域划分

    Figure  21.  Division of the tooth profile deformation region

    图  22  不同转速下仿真齿形轮廓

    Figure  22.  Simulation tooth profiles at different rotation speeds

    图  23  仿真与试验齿形轮廓对比

    Figure  23.  Comparison of simulated and experimental tooth profiles

    图  24  不同转速下仿真与试验齿形轮廓误差率

    Figure  24.  Error rates of simulated and experimental tooth profiles at different rotation speeds

    表  1  材料参数

    Table  1.   Material parameters

    材料材料密度/(kg·m−3)弹性模量E/GPa泊松比μA/MPaB/MPaCnmtn/℃$ \dot \varepsilon $
    紫铜 8900 124 0.34 90 292 0.03 0.31 1.09 1058 0.002
    45钢 7850 210 0.269 525.4 541.585 0.021 0.4296 0.98 1492 0.008
    40Cr 7850 211 0.277 905 226 0.03 0.21 0.83 1673 0.004
    下载: 导出CSV

    表  2  冷滚打成形试验方案

    Table  2.   Experimental plan for cold-roll forming

    序号 滚打轮转速/
    (r·min−1
    进给速度/
    (mm·min−1
    滚打密度/
    (mm−1
    1 400 67 6
    2 600 100 6
    3 800 133 6
    4 1000 167 6
    5 1200 200 6
    下载: 导出CSV
  • [1] 崔莅沐, 肖继明. 冷滚打成形中打入量对残余应力的影响规律仿真研究[J]. 机械强度, 2019, 41(4): 927-934. doi: 10.16579/j.issn.1001.9669.2019.04.026

    CUI L M, XIAO J M. Based on the numerical simulation of cold roll-beating forming residual stress research[J]. Journal of Mechanical Strength, 2019, 41(4): 927-934. (in Chinese) doi: 10.16579/j.issn.1001.9669.2019.04.026
    [2] LI Y, LI Y X, YANG M S, et al. Analyzing the thermal mechanical coupling of 40cr cold roll-beating forming process based on the johnson–cook dynamic constitutive equation[J]. International Journal of Heat and Technology, 2015, 33(3): 51-58. doi: 10.18280/ijht.330307
    [3] 李龙, 李言, 崔莅沐, 等. 冷滚打成形力及金属变形的有限元数值模拟[J]. 中国机械工程, 2017, 28(16): 1951-1959. doi: 10.3969/j.issn.1004-132X.2017.16.009

    LI L, LI Y, CUI L M, et al. Finite element numerical simulation of forming forces and metal deformations in cold roll-beating forming processes[J]. China Mechanical Engineering, 2017, 28(16): 1951-1959. (in Chinese) doi: 10.3969/j.issn.1004-132X.2017.16.009
    [4] 李玉玺, 李言, 崔莅沐, 等. 丝杠冷滚打成形参数控制研究[J]. 中国机械工程, 2017, 28(19): 2388-2393. doi: 10.3969/j.issn.1004-132X.2017.19.019

    LI Y X, LI Y, CUI L M, et al. Study on shaping parameter control of lead screw cold roll-beating[J]. China Mechanical Engineering, 2017, 28(19): 2388-2393. (in Chinese) doi: 10.3969/j.issn.1004-132X.2017.19.019
    [5] 崔凤奎, 凌远非, 薛进学, 等. 花键冷滚打成形表层加工硬化研究[J]. 兵工学报, 2017, 38(2): 358-366. doi: 10.3969/j.issn.1000-1093.2017.02.021

    CUI F K, LING Y F, XUE J X, et al. Research on work-hardening behavior of surface layer of spline during cold roll-beating[J]. Acta Armamentarii, 2017, 38(2): 358-366. (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.02.021
    [6] GUO H, JIN X, ZHANG Z J. Evaluation and numerical calculation of entropy based on contact strain-energy[J]. Procedia CIRP, 2018, 76: 106-109. doi: 10.1016/j.procir.2018.01.014
    [7] 陈飞, 王成雨, 李伟刚, 等. ABAQUS二次开发在航空弓形结构件喷丸强化模拟中的应用[J]. 计算机辅助工程, 2020, 29(2): 55-60. doi: 10.13340/j.cae.2020.02.011

    CHEN F, WANG C Y, LI W G, et al. Application of abaqus secondary development in shot peening strengthening of aerospace arc-shaped frame[J]. Computer Aided Engineering, 2020, 29(2): 55-60. (in Chinese) doi: 10.13340/j.cae.2020.02.011
    [8] 刘湘云, 赵荃. 开孔复合材料层压板剩余强度分析建模ABAQUS二次开发[J]. 机械设计与制造工程, 2019, 48(12): 29-32. doi: 10.3969/j.issn.2095-509X.2019.12.007

    LIU X Y, ZHAO Q. The secondary development of ABAQUS for residual strength of open-hole composite laminates[J]. Machine Design and Manufacturing Engineering, 2019, 48(12): 29-32. (in Chinese) doi: 10.3969/j.issn.2095-509X.2019.12.007
    [9] 王治磊, 周杰, 杨波, 等. SUS304不锈钢Lemaitre损伤模型参数研究[J]. 塑性工程学报, 2020, 27(11): 167-173. doi: 10.3969/j.issn.1007-2012.2020.11.025

    WANG Z L, ZHOU J, YANG B, et al. Study on Lemaitre damage model parameters of SUS304 stainless steel[J]. Journal of Plasticity Engineering, 2020, 27(11): 167-173. (in Chinese) doi: 10.3969/j.issn.1007-2012.2020.11.025
    [10] 王帅培, 倪凯强. 基于参数化方法的层合板单钉连接结构承载特性研究[J]. 复合材料科学与工程, 2020(9): 37-41. doi: 10.3969/j.issn.1003-0999.2020.09.006

    WANG S P, NI K Q. Study on bearing characteristics of laminated plate with single joint based on parametric method[J]. Composites Science and Engineering, 2020(9): 37-41. (in Chinese) doi: 10.3969/j.issn.1003-0999.2020.09.006
    [11] 李龙, 李言, 杨明顺, 等. 冷滚打工艺参数对成形力及金属变形影响研究[J]. 兵工学报, 2019, 40(2): 420-429. doi: 10.3969/j.issn.1000-1093.2019.02.023

    LI L, LI Y, YANG M S, et al. Influences of cold roll-beating forming parameters on forming force and metal deformation[J]. Acta Armamentarii, 2019, 40(2): 420-429. (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.02.023
    [12] 陈岳坪, 肖学勤, 陈敏. 基于等体积法的旋转体拉深件毛坯尺寸的自动计算[J]. 锻压技术, 2004, 29(3): 37-39. doi: 10.3969/j.issn.1000-3940.2004.03.011

    CHEN Y P, XIAO X Q, CHEN M. Automatic calculation of blank dimension for rotative drawing parts based on the method of identical volume[J]. Forging & Stamping Technology, 2004, 29(3): 37-39. (in Chinese) doi: 10.3969/j.issn.1000-3940.2004.03.011
    [13] 梁小明, 李言, 魏凡智, 等. 冷滚打成形中滚打深度与回弹规律的仿真[J]. 中国机械工程, 2016, 27(22): 3054-3060. doi: 10.3969/j.issn.1004-132X.2016.22.013

    LIANG X M, LI Y, WEI F Z, et al. Simulation on depths of roll-beating and springback rules of cold roll-beating forming[J]. China Mechanical Engineering, 2016, 27(22): 3054-3060. (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.22.013
    [14] DUCOBU F, RIVIèRE-LORPHèVRE E, FILIPPI E. On the importance of the choice of the parameters of the Johnson-Cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model[J]. International Journal of Mechanical Sciences, 2017, 122: 143-155. doi: 10.1016/j.ijmecsci.2017.01.004
    [15] LAAKSO S V, NIEMI E. Using FEM simulations of cutting for evaluating the performance of different johnson cook parameter sets acquired with inverse methods[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47: 95-101. doi: 10.1016/j.rcim.2016.10.006
    [16] 张璐, 李言, 杨明顺, 等. 高速冷滚打成形过程的有限元数值模拟[J]. 机械工程材料, 2012, 36(8): 86-88.

    ZHANG L, LI Y, YANG M S, et al. Finite element numerical simulation for high-speed cold roll-beating forming process[J]. Materials for Mechanical Engineering, 2012, 36(8): 86-88. (in Chinese)
    [17] 李嘉伟, 李言, 杨明顺, 等. 齿条冷滚打成形摩擦系数的求解方法[J]. 锻压技术, 2019, 44(3): 50-58. doi: 10.13330/j.issn.1000-3940.2019.03.008

    LI J W, LI Y, YANG M S, et al. Method of solving friction coefficient in rack cold rolling-beating[J]. Forging & Stamping Technology, 2019, 44(3): 50-58. (in Chinese) doi: 10.13330/j.issn.1000-3940.2019.03.008
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  130
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回