留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型双出杆活塞式磁流变减摆器结构设计及性能研究

田静 张亚男

田静,张亚男. 新型双出杆活塞式磁流变减摆器结构设计及性能研究[J]. 机械科学与技术,2023,42(9):1559-1566 doi: 10.13433/j.cnki.1003-8728.20220094
引用本文: 田静,张亚男. 新型双出杆活塞式磁流变减摆器结构设计及性能研究[J]. 机械科学与技术,2023,42(9):1559-1566 doi: 10.13433/j.cnki.1003-8728.20220094
TIAN Jing, ZHANG Ya′nan. Structural Design and Performance Research of New Type Double-rod Piston Magnetorheological Shimmy Damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1559-1566. doi: 10.13433/j.cnki.1003-8728.20220094
Citation: TIAN Jing, ZHANG Ya′nan. Structural Design and Performance Research of New Type Double-rod Piston Magnetorheological Shimmy Damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1559-1566. doi: 10.13433/j.cnki.1003-8728.20220094

新型双出杆活塞式磁流变减摆器结构设计及性能研究

doi: 10.13433/j.cnki.1003-8728.20220094
基金项目: 中航工业产学研协同创新专项(cxy2013MH35)
详细信息
    作者简介:

    田静(1972−),教授,硕士生导师,博士,研究方向为磁流变减震技术和飞机维修理论及故障诊断技术,715732278@qq.com

  • 中图分类号: V226;TH137

Structural Design and Performance Research of New Type Double-rod Piston Magnetorheological Shimmy Damper

  • 摘要: 被动油液式减摆器对摆振激励的改变不能实时响应,传统磁流变(Magnetorheological,MR)减摆器存在引线复杂、不利于散热、输出阻尼力较低等方面的不足。针对上述问题,为了有效抑制飞机前轮摆振,提出一种新型压差式结构的双出杆活塞式MR减摆器,内置固定双线圈,内筒两端与磁芯和导磁环形成对称双阻尼通道;根据减摆需求完成结构设计,利用ANSYS/Emag 2020 R1对MR减摆器进行磁场仿真,仿真结果验证理论分析的合理性;最后进行力学性能分析。结果表明:设计的MR减摆器输出阻尼力满足减摆需求,动力可调系数较大,示功曲线近似于椭圆。所采用的研究思路对今后飞机起落架MR减摆器的研发具有一定指导意义。
  • 图  1  不同结构形式MR减摆器

    Figure  1.  Different structural forms of MR dampers

    图  2  新型双出杆活塞式MR减摆器原理图

    Figure  2.  Schematic diagram of a novel double-out-rodpiston MR damper

    图  3  密封部位

    Figure  3.  Sealing components

    图  4  MR减摆器结构尺寸

    Figure  4.  MR damper structural dimensions

    图  5  MR减摆器装配图

    Figure  5.  MR damper assembly diagram

    图  6  磁路走势

    Figure  6.  Distribution of magnetic flux

    图  7  MR减摆器建模示意图

    Figure  7.  Schematic diagram of the MR damper model

    图  8  材料导磁性能曲线

    Figure  8.  Magnetic permeability performance of the materials

    图  9  磁感应强度云图

    Figure  9.  Cloud map of induction intensity

    图  10  磁力线走势图

    Figure  10.  Distribution of magnetic field lines

    图  11  阻尼通道有效长度磁感应强度B

    Figure  11.  Magnetic induction intensity along the effective length of the damping channel

    图  12  阻尼通道平均磁感应强度$\bar B$

    Figure  12.  Average magnetic induction intensity in the damping channel

    图  13  MR减摆器运动示意图

    Figure  13.  Schematic diagram of the motion of the MR damper

    图  14  MR减摆器F-v曲线

    Figure  14.  The F-v curve of the MR damper

    图  15  不同速度下的动力可调系数

    Figure  15.  The dynamic adjustable coefficient atdifferent speeds

    图  16  MR减摆器示功图

    Figure  16.  Indicator diagram for the MR damper

    表  1  不同工况下的理论阻尼力

    Table  1.   Theoretical damping force under differentoperating conditions

    序号振幅/mm频率/Hz理论阻尼力/kN
    12.831.23
    21.471.44
    30.7111.13
    40.7151.54
    下载: 导出CSV

    表  2  结构尺寸参数

    Table  2.   Structural dimension parameter

    参数数值/mm参数数值/mm
    R05Lm10
    R111.5tm0.8
    R218.5Ln42
    R322tn1
    R424.5Lc12
    R513Wc5.5
    Lg7
    下载: 导出CSV

    表  3  不同电流下MRF屈服强度

    Table  3.   MRF yield strength under different currents

    电流/A阻尼通道$\bar {{B} }$/Tτy/kPa
    0.250.241510.26481
    0.500.437523.43169
    0.750.547530.70975
    1.000.610534.52339
    1.250.651536.81403
    下载: 导出CSV

    表  4  系数c数值

    Table  4.   Numerical values of the coefficient c

    v/(m·s−1 I/A
    0.250.500.751.001.25
    02.072.072.072.072.07
    0.042.162.112.102.102.10
    0.082.232.152.132.122.12
    0.122.302.182.162.152.15
    0.162.352.222.192.172.17
    0.202.402.252.212.202.19
    0.242.442.272.232.222.21
    下载: 导出CSV
  • [1] HAN C, KIM B G, CHOI S B. Design of a new magnetorheological damper based on passive oleo-pneumatic landing gear[J]. Journal of Aircraft, 2018, 55(6): 2510-2520. doi: 10.2514/1.C034996
    [2] HAN C, KANG B H, CHOI S B, et al. Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers[J]. Journal of Aircraft, 2019, 56(5): 1980-1986. doi: 10.2514/1.C035298
    [3] DONG Z Z, FENG Z M, CHEN Y H, et al. Design and multiobjective optimization of magnetorheological damper considering the consistency of magnetic flux density[J]. Shock and Vibration, 2020, 2020: 7050356.
    [4] KUBÍK M, MACHÁCEK O, STRECKER Z, et al. Design and testing of magnetorheological valve with fast force response time and great dynamic force range[J]. Smart Materials and Structures, 2017, 26(4): 047002. doi: 10.1088/1361-665X/aa6066
    [5] 胡国良, 张佳伟. 磁流变阻尼器结构优化设计研究现状[J]. 机床与液压, 2019, 47(1): 145-150. doi: 10.3969/j.issn.1001-3881.2019.01.033

    HU G L, ZHANG J W. State of the art review on structural optimization design of magnetorheological damper[J]. Machine Tool & Hydraulics, 2019, 47(1): 145-150. (in Chinese) doi: 10.3969/j.issn.1001-3881.2019.01.033
    [6] ZHU X C, JING X J, CHENG L. Magnetorheological fluid dampers: A review on structure design and analysis[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(8): 839-873. doi: 10.1177/1045389X12436735
    [7] GOŁDASZ J, SAPIŃSKI B. Insight into magnetorheological shock absorbers[M]. Cham: Springer, 2015
    [8] 《飞机设计手册》总编委会. 飞机设计手册. 第14册, 起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002

    Editorial Committee of Aircraft Design Manual. Aircraft design handbook. Volume 14, Take-off and landing system design[M]. Beijing: Aviation Industry Press, 2002. (in Chinese)
    [9] 祝世兴, 杨云鹏. 飞机起落架磁流变减摆器的设计流程[J]. 液压与气动, 2016(10): 67-74. doi: 10.11832/j.issn.1000-4858.2016.010.013

    ZHU S X, YANG Y P. Design process of aircraft landing gear shimmy dampers based on magnetorheological fluid[J]. Chinese Hydraulics & Pneumatics, 2016(10): 67-74. (in Chinese) doi: 10.11832/j.issn.1000-4858.2016.010.013
    [10] 祝世兴, 王国卫. 线圈外置式磁流变减摆器设计与实验研究[J]. 机床与液压, 2019, 47(1): 12-17. doi: 10.3969/j.issn.1001-3881.2019.01.004

    ZHU S X, WANG G W. Design and experimental research of external coil type magnetorheological shimmy damper[J]. Machine Tool & Hydraulics, 2019, 47(1): 12-17. (in Chinese) doi: 10.3969/j.issn.1001-3881.2019.01.004
    [11] 刘秀. 双线圈内置式磁流变减摆器设计研究[D]. 天津: 中国民航大学, 2018

    LIU X. Design and research of dual-coil built-in magnetorheological damper[D]. Tianjin: Civil Aviation University of China, 2018. (in Chinese)
    [12] 李忠献, 徐龙河. 新型磁流变阻尼器及半主动控制设计理论[M]. 北京: 科学出版社, 2012: 29-36

    LI Z X, XU L H. New-type Magnetorheological damper and semi-active control design theory[M]. Beijing: Science Press, 2012. (in Chinese)
    [13] 李泉凤. 电磁场数值计算与电磁铁设计[M]. 北京: 清华大学出版社, 2002

    LI Q F. Numerical calculation of electromagnetic field and design of electromagnet magnetization curve[M]. Beijing: Tsinghua University Press, 2002. (in Chinese)
    [14] NGUYEN Q H, CHOI S B. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range[J]. Smart Materials and Structures, 2009, 18(1): 015013. doi: 10.1088/0964-1726/18/1/015013
    [15] 周云, 谭平. 磁流变阻尼控制理论与技术[M]. 北京: 科学出版社, 2007

    ZHOU Y, TAN P. Theory and technology of magnetorheological damping control[M]. Beijing: Science Press, 2007. (in Chinese)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  122
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回