留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中厚板V型坡口GMAW电弧声信号焊缝偏差识别方法研究

岳建锋 黄云龙 赵旺 刘文吉 刘海华 郗迎斌

岳建锋,黄云龙,赵旺, 等. 中厚板V型坡口GMAW电弧声信号焊缝偏差识别方法研究[J]. 机械科学与技术,2023,42(9):1474-1481 doi: 10.13433/j.cnki.1003-8728.20220093
引用本文: 岳建锋,黄云龙,赵旺, 等. 中厚板V型坡口GMAW电弧声信号焊缝偏差识别方法研究[J]. 机械科学与技术,2023,42(9):1474-1481 doi: 10.13433/j.cnki.1003-8728.20220093
YUE Jianfeng, HUANG Yunlong, ZHAO Wang, LIU Wenji, LIU Haihua, XI Yingbin. Study on Weld Seam Deviation Method of GMAW Arc Sound Signal in V-groove of Medium Thickness Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1474-1481. doi: 10.13433/j.cnki.1003-8728.20220093
Citation: YUE Jianfeng, HUANG Yunlong, ZHAO Wang, LIU Wenji, LIU Haihua, XI Yingbin. Study on Weld Seam Deviation Method of GMAW Arc Sound Signal in V-groove of Medium Thickness Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1474-1481. doi: 10.13433/j.cnki.1003-8728.20220093

中厚板V型坡口GMAW电弧声信号焊缝偏差识别方法研究

doi: 10.13433/j.cnki.1003-8728.20220093
基金项目: 天津市教委科研计划项目(2019KJ011&2019ZD07)
详细信息
    作者简介:

    岳建锋(1973−),教授,研究方向为焊接自动化,billyue@163.com

  • 中图分类号: TG409

Study on Weld Seam Deviation Method of GMAW Arc Sound Signal in V-groove of Medium Thickness Plate

  • 摘要: 针对中厚板V型坡口GMAW(熔化极气体保护焊)焊缝偏差识别问题,提出一种新型基于电弧声信号的中厚板GMAW摆动焊焊缝偏差识别方法。在V型坡口摆动焊接中,发现当摆动中心与焊缝中心出现偏差,电弧声信号呈现明显非对称性。为此,针对电弧声信号的时域和频域特征开展了进一步研究,明确了与焊缝偏差信号存在密切关联的电弧声摆动极限位置能量差、标准差、小波包第7频带和第8频带能量等特征参量。构建基于上述4类参量的GS-SVR非线性回归方程,通过电弧声特征信号检测,可实现焊接过程中焊接偏差信息的在线识别,通过左右偏差试验表明该模型具有良好精度,可满足工程实际生产需要。
  • 图  1  焊接试验系统原理图

    Figure  1.  Schematic diagram of the welding test system

    图  2  试验设置

    Figure  2.  Experimental setup

    图  3  原始信号与去趋势项信号

    Figure  3.  Original and detrending term signals

    图  4  电弧声信号样本选取流程图

    Figure  4.  Flowchart for arc sound signal sample selection

    图  5  电弧声信号波形对比图与焊接示意图

    Figure  5.  Waveform comparison of the arc sound signal and welding schematic diagram

    图  6  电弧声信号时域特征对比图

    Figure  6.  Comparison of the time-domain characteristics of the arc sound signal

    图  7  小波包能量特征对比图

    Figure  7.  Comparison of wavelet packet energy characteristics

    图  8  GS-SVR偏差预测图

    Figure  8.  GS-SVR deviation prediction graph

    图  9  试验方案

    Figure  9.  Experimental plan

    图  10  试件放置示意图

    Figure  10.  Schematic diagram of specimen placement

    图  11  右偏试验实际焊缝偏差与识别偏差值

    Figure  11.  Actual welding seam deviation and identified deviation value in the right deviation test

    图  12  左偏试验实际焊缝偏差与识别偏差值

    Figure  12.  Actual welding seam deviation and identified deviation value in the left deviation test

    表  1  焊接工艺参数

    Table  1.   Welding process parameters

    试验参数参数值
    送丝速度 /(m·min–16.4
    摆动幅度 / mm6
    摆动频率 / Hz1.5
    焊丝直径 / mm1
    焊接速度 /(mm·s–13
    保护气82%Ar + 18%CO2
    下载: 导出CSV
  • [1] SHI H, ZHANG K, ZHENG J, et al. Defects inhibition and process optimization for thick plates laser welding with filler wire[J]. Journal of Manufacturing Processes, 2017, 26: 425-432. doi: 10.1016/j.jmapro.2017.03.009
    [2] 乐健, 张华, 叶艳辉, 等. 基于旋转电弧传感器的角焊缝跟踪[J]. 焊接学报, 2015, 36(5): 5-9.

    LE J, ZHANG H, YE Y H, et al. Fillet weld tracking based on rotating arc sensor[J]. Transactions of the China Welding Institution, 2015, 36(5): 5-9. (in Chinese)
    [3] ZOU Y B, WANG Y B, ZHOU W L, et al. Real-time seam tracking control system based on line laser visions[J]. Optics & Laser Technology, 2018, 103: 182-192.
    [4] PAL K, BHATTACHARYA S, PAL S K. Prediction of metal deposition from arc sound and weld temperature signatures in pulsed MIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(11-12): 1113-1130. doi: 10.1007/s00170-009-2052-5
    [5] YUSOF M F M, KAMARUZAMAN M A, ISHAK M, et al. Porosity detection by analyzing arc sound signal acquired during the welding process of gas pipeline steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 3661-3670. doi: 10.1007/s00170-016-9343-4
    [6] 石玗, 黄健康, 聂晶, 等. 电弧声与铝合金脉冲MIG焊熔滴过渡的相关性[J]. 焊接学报, 2009, 30(3): 29-32. doi: 10.3321/j.issn:0253-360X.2009.03.008

    SHI Y, HUANG J K, NIE J, et al. Correlation of arc acoustic signals and droplet transfer in aluminum pulsed MIG welding[J]. Transactions of The China Welding Institution, 2009, 30(3): 29-32. (in Chinese) doi: 10.3321/j.issn:0253-360X.2009.03.008
    [7] 高延峰, 王齐胜, 黄林然, 等. 基于人耳听觉模型的MIG焊熔滴过渡状态识别[J]. 机械工程学报, 2019, 55(17): 68-76. doi: 10.3901/JME.2019.17.068

    GAO Y F, WANG Q S, HUANG L R, et al. Droplet transfer modes identification in MIG welding process based on a human auditory model[J]. Journal of Mechanical Engineering, 2019, 55(17): 68-76. (in Chinese) doi: 10.3901/JME.2019.17.068
    [8] 毕淑娟, 兰虎, 刘立君. 基于电弧声信号特征分析MAG焊熔透状态在线监测[J]. 焊接学报, 2010, 31(5): 17-20.

    BI S J, LAN H, LIU L J. On-line monitoring of penetration status based on characteristic analysis of arc sound signal in MAG welding[J]. Transactions of the China Welding Institution, 2010, 31(5): 17-20. (in Chinese)
    [9] WANG Q S, GAO Y F, HUANG L R, et al. Weld bead penetration state recognition in GMAW process based on a central auditory perception model[J]. Measurement, 2019, 147: 106901. doi: 10.1016/j.measurement.2019.106901
    [10] 张志勇, 刘鑫, 黄彩霞, 等. 工业平缝机的噪声源识别与运行噪声预测研究[J]. 振动与冲击, 2016, 35(20): 220-225.

    ZHANG Z Y, LIU X, HUANG C X, et al. Noise source identification and operating noise prediction of the industrial sewing machines[J]. Journal of Vibration and Shock, 2016, 35(20): 220-225. (in Chinese)
    [11] 甘泉, 叶茂, 任珉. 高架交通沿线地面环境振动测试频域分析[J]. 广州大学学报(自然科学版), 2010, 9(2): 77-82.

    GAN Q, YE M, REN M. In situ measurement and analysis for environmental vibration induced by urban traffic in time domain[J]. Journal of Guangzhou University (Natural Science Edition), 2010, 9(2): 77-82. (in Chinese)
    [12] 陆小明. 基于EMD的滚动轴承故障诊断方法的研究[D]. 苏州: 苏州大学, 2012

    Lu X M. Study on rolling element bearing fault diagnosis methods based on emperical mode decomposition[D]. Suzhou: Soochow University, 2012. (in Chinese)
    [13] DRUCKER H, Burges C J C, KAUFMAN L, et al. Support vector regression machines[C]//Proceedings of the 9th International Conference on Neural Information Processing Systems. Denver: MIT Press, 1996: 155-161
    [14] 张洁, 庞丽萍, 完颜笑如, 等. 基于脑电功率谱密度的作业人员脑力负荷评估方法[J]. 航空学报, 2020, 41(10): 123618.

    ZHANG J, PANG L P, WANYAN X R, et al. Method for operator mental workload assessment based on power spectral density of EEG[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123618. (in Chinese)
    [15] CAI L Q, XU H B, YANG Y, et al. Robust facial expression recognition using RGB-D images and multichannel features[J]. Multimedia Tools and Applications, 2019, 78(20): 28591-28607. doi: 10.1007/s11042-018-5981-x
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  40
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回