留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构磁耦合推进水下机器人设计与性能评估

李亚鑫 易锦浩 王宇

李亚鑫,易锦浩,王宇. 可重构磁耦合推进水下机器人设计与性能评估[J]. 机械科学与技术,2023,42(9):1381-1391 doi: 10.13433/j.cnki.1003-8728.20220092
引用本文: 李亚鑫,易锦浩,王宇. 可重构磁耦合推进水下机器人设计与性能评估[J]. 机械科学与技术,2023,42(9):1381-1391 doi: 10.13433/j.cnki.1003-8728.20220092
LI Yaxin, YI Jinhao, WANG Yu. Design and Performance Evaluation of Underwater Vehicle with Reconfigurable Magnetic-coupling Thrusters[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1381-1391. doi: 10.13433/j.cnki.1003-8728.20220092
Citation: LI Yaxin, YI Jinhao, WANG Yu. Design and Performance Evaluation of Underwater Vehicle with Reconfigurable Magnetic-coupling Thrusters[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1381-1391. doi: 10.13433/j.cnki.1003-8728.20220092

可重构磁耦合推进水下机器人设计与性能评估

doi: 10.13433/j.cnki.1003-8728.20220092
基金项目: 国家自然科学基金项目(51905457)、成都市科技局科普创作项目(2022-HM07-00046-SN)及成都市科普基地建设项目(2022-HM03-00044-SN)
详细信息
    作者简介:

    李亚鑫(1987−),副教授,博士,研究方向为水下仿生机器人,水下机器人矢量推进技术,liyaxin@swpu.edu.cn

    通讯作者:

    王宇,副教授,博士,yuwang@swpu.edu.cn

  • 中图分类号: TP242

Design and Performance Evaluation of Underwater Vehicle with Reconfigurable Magnetic-coupling Thrusters

  • 摘要: 为了经济高效地实现矢量推进,提高水下机器人的机动性能,设计了一种新型矢量推进水下机器人。该机器人采用两个可重构磁耦合推进器作为推进系统的主动力单元,每个推进器都具备两个自由度的矢量重构能力,相较于传统水下机器人,拥有更高的可操纵性和灵活性。本文通过建立推进系统模型,完成了机器人的运动规划,并利用测力实验装置,对机器人的动力性能进行了评估。在此基础上,对机器人进行了前进、偏航、上浮、下潜等多自由度的运动控制实验。实验结果表明,该机器人能够高效地实现多个自由度的运动,新型可重构磁耦合推进器能够稳定的提供矢量推力,验证了该设计方案的可行性。
  • 图  1  可重构磁耦合推进水下机器人整体结构

    Figure  1.  Overall structure of the reconfigurable magnetically coupled propulsion underwater robot

    图  2  实验样机

    Figure  2.  Experimental prototype

    图  3  新型可重构磁耦合推进器

    Figure  3.  Novel reconfigurable magnetically coupled propeller

    图  4  磁力万向节结构示意图

    Figure  4.  Schematic diagram of the structure of the magnetic universal joint

    图  5  磁力万向节磁铁耦合示意图

    Figure  5.  Schematic diagram of magnetic coupling in the magnetic universal joint

    图  6  两自由度球面并联机构

    Figure  6.  The two-degree-of-freedom spherical parallel mechanism

    图  7  推力矢量分解示意图

    Figure  7.  Schematic diagram of the thrust vector decomposition

    图  8  机器人体坐标系和推进器坐标系

    Figure  8.  Robot body and propeller coordinate systems

    图  9  水下机器人的几种运动姿态

    Figure  9.  Various motion gestures of the underwater robot

    图  10  测力实验装置

    Figure  10.  Force measurement experimental setup

    图  11  水下机器人前向推力曲线

    Figure  11.  Forward thrust curve of the underwater robot

    图  12  机器人水平偏转力矩变化曲线

    Figure  12.  Variation curve of the horizontal deflection torque of the robot

    图  13  机器人竖直偏转力矩变化曲线

    Figure  13.  Variation curve of the vertical deflection torque of the robot

    图  14  可重构磁耦合推进水下机器人控制流程

    Figure  14.  Control process for the reconfigurable magnetically coupled propulsion underwater robot

    图  15  逆时针转向角度变化曲线

    Figure  15.  The counterclockwise steering angle variation curve

    图  16  90°转向测试

    Figure  16.  90° steering test

    图  17  90°闭环转向偏转角度变化曲线

    Figure  17.  Variation curve for closed-loop steering deflection angle at 90°

    图  18  定向航行测试

    Figure  18.  Directed navigation test

    图  19  定向航行测试航向角变化曲线

    Figure  19.  Variation curve of heading angle in the directed navigation test

    图  20  下潜运动测试

    Figure  20.  Diving motion test

    图  21  下潜运动深度变化曲线

    Figure  21.  Variation curve of depth in the diving motion test

    图  22  下潜运动机器人倾转角变化曲线

    Figure  22.  Variation curve of tilt angle in diving motion

    图  23  上浮运动测试

    Figure  23.  Ascending motion test

    图  24  上浮运动深度变化曲线

    Figure  24.  Variation curve of depth in the ascending motion test

    图  25  上浮运动机器人倾转角变化曲线

    Figure  25.  Variation curve of tilt angle in ascending motion

    表  1  实验样机参数表

    Table  1.   Experimental prototype parameters

    参数名称数值
    整体尺寸(长×宽×高) 365 mm×346 mm×114 mm
    整体重量 4.35 kg
    螺旋桨(直径×螺距×孔径) 60 mm×40 mm×4 mm
    磁力万向节直径 34 mm, 47 mm
    主推电机 12 V,30 W,1 200 r/min
    电池组 12.5 V,4 000 mA·h,30 C
    舵机型号 HS-5086WP
    传感器型号 MPU9250,CJMCU5837
    下载: 导出CSV

    表  2  水平偏转力矩

    Table  2.   Horizontal deflection torque

    推进器输出率/%偏转力矩/Nm
    a=10°a=20°a=30°a=40°a=50°
    200.0200.0210.0250.0270.024
    400.1560.1770.1960.1870.183
    600.3110.3340.3500.3640.356
    800.4530.4930.5010.5150.510
    1000.5830.6350.6650.6890.673
    下载: 导出CSV

    表  3  竖直偏转力矩

    Table  3.   Vertical deflection torque

    推进器输出率/%偏转力矩/Nm
    b=10°b=20°b=30°b=40°b=50°
    200.0050.0070.0110.1400.017
    400.0270.0430.0630.0870.113
    600.0450.0830.1360.1670.221
    800.0710.1460.1980.2580.303
    1000.1090.1650.2590.3150.359
    下载: 导出CSV
  • [1] GAO F D, HAN Y Y, WANG H D, et al. Analysis and innovation of key technologies for autonomous underwater vehicles[J]. Journal of Central South University, 2015, 22(9): 3347-3357. doi: 10.1007/s11771-015-2875-1
    [2] WANG X M, LIANG S G. Maneuverability analysis of a novel portable modular AUV[J]. Mathematical Problems in Engineering, 2019, 2019: 1631930.
    [3] LI Y X, GAO P, WANG Y, et al. The implementation and evaluation of a multi-DOFs Coanda-effect jet device for underwater robots[J]. Applied Ocean Research, 2021, 108: 102545. doi: 10.1016/j.apor.2021.102545
    [4] FAGUNDES G H, CHOCRON O, BENBOUZID M, et al. Advances in reconfigurable vectorial thrusters for adaptive underwater robots[J]. Journal of Marine Science and Engineering, 2021, 9(2): 170. doi: 10.3390/jmse9020170
    [5] PUGI L, ALLOTTA B, PAGLIAI M. Redundant and reconfigurable propulsion systems to improve motion capability of underwater vehicles[J]. Ocean Engineering, 2018, 148: 376-385. doi: 10.1016/j.oceaneng.2017.11.039
    [6] WANG T, WANG J Q, WU C, et al. Disturbance-rejection control for the hover and transition modes of a negative-buoyancy quad tilt-rotor autonomous underwater vehicle[J]. Applied Sciences, 2018, 8(12): 2459. doi: 10.3390/app8122459
    [7] EHLERS K, MEYER B, MAEHLE E. Full holonomic control of the Omni-directional AUV SMART-E[C]//ISR/Robotik 2014; 41st International Symposium on Robotics. Munich: VDE, 2014: 1-6
    [8] LI Y X, GUO S X, WANG Y. Design and characteristics evaluation of a novel spherical underwater robot[J]. Robotics and Autonomous Systems, 2017, 94: 61-74. doi: 10.1016/j.robot.2017.03.014
    [9] KOPMAN V, CAVALIERE N, PORFIRI M. MASUV-1: a miniature underwater vehicle with multidirectional thrust vectoring for safe animal interactions[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(3): 563-571. doi: 10.1109/TMECH.2011.2108307
    [10] BA X, LUO X H, SHI Z C, et al. A vectored water jet propulsion method for autonomous underwater vehicles[J]. Ocean Engineering, 2013, 74: 133-140. doi: 10.1016/j.oceaneng.2013.10.003
    [11] LIU T, HU Y L, XU H, et al. Investigation of the vectored thruster AUVs based on 3SPS-S parallel manipulator[J]. Applied Ocean Research, 2019, 85: 151-161. doi: 10.1016/j.apor.2019.01.025
    [12] VEGA E P, CHOCRON O, BENBOUZID M. A flat design and a validated model for an AUV reconfigurable magnetic coupling thruster[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2892-2901. doi: 10.1109/TMECH.2016.2590141
    [13] CHOCRON O, PRIEUR U, PINO L. A validated feasibility prototype for AUV reconfigurable magnetic coupling thruster[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 642-650. doi: 10.1109/TMECH.2013.2250987
    [14] GASPAROTO H F, CHOCRON O, BENBOUZID M, et al. Torque analysis of a flat reconfigurable magnetic coupling thruster for marine renewable energy systems maintenance AUVs[J]. Energies, 2019, 12(1): 56.
    [15] 杨岳, 何雪浤, 谷海涛, 等. 水下机器人耐压壳体结构优化[J]. 机械科学与技术, 2016, 35(4): 614-619.

    YANG Y, HE X H, GU H T, et al. Structure optimization of underwater robot pressure hull[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(4): 614-619. (in Chinese)
    [16] LI Y X, TIAN C, WANG Y, et al. Design and simulation of a collaborative propulsion system for the underwater robot[J]. International Journal of Robotic Engineering, 2019, 4(1): 019.
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  144
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回