留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮轨综合磨耗下对高速列车动力学性能的影响

杨洋 吴涛 林凤涛 黄琴 庞华飞 邹亮

杨洋,吴涛,林凤涛, 等. 轮轨综合磨耗下对高速列车动力学性能的影响[J]. 机械科学与技术,2023,42(9):1542-1550 doi: 10.13433/j.cnki.1003-8728.20220090
引用本文: 杨洋,吴涛,林凤涛, 等. 轮轨综合磨耗下对高速列车动力学性能的影响[J]. 机械科学与技术,2023,42(9):1542-1550 doi: 10.13433/j.cnki.1003-8728.20220090
YANG Yang, WU Tao, LIN Fengtao, HUANG Qin, PANG Huafei, ZOU Liang. Effect of Comprehensive Wheel-rail Wear on Dynamic Performance of High-speed Trains[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1542-1550. doi: 10.13433/j.cnki.1003-8728.20220090
Citation: YANG Yang, WU Tao, LIN Fengtao, HUANG Qin, PANG Huafei, ZOU Liang. Effect of Comprehensive Wheel-rail Wear on Dynamic Performance of High-speed Trains[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1542-1550. doi: 10.13433/j.cnki.1003-8728.20220090

轮轨综合磨耗下对高速列车动力学性能的影响

doi: 10.13433/j.cnki.1003-8728.20220090
基金项目: 国家自然科学基金项目(52065021,51865009,51975210)与江西省自然科学基金项目(20192BAB206022)
详细信息
    作者简介:

    杨洋(1974−),副教授,博士,研究方向为轮轨运维新技术,特种加工技术,1292183825@qq.com

  • 中图分类号: U270.11

Effect of Comprehensive Wheel-rail Wear on Dynamic Performance of High-speed Trains

  • 摘要: 高速铁路长时间运营,经常发生车轮多边形磨耗,并伴随钢轨波磨,两种损伤形式对列车运行特性的综合影响有待深入研究。采用简谐函数法建立车轮多边形模型,设计余弦函数描述钢轨不平顺磨耗,建立列车刚柔耦合动力学模型,分析不同车轮多边形及钢轨波磨综合磨耗情况下,列车的动力学性能的影响,并提出轮轨综合磨耗的安全限值。结果表明:在轮轨综合磨耗激扰下对列车的动力学性能的影响更为剧烈;列车运行速度为300 km/h下,轮轨垂向力增长幅值最大达到30%,车轮与25阶振型模态产生共振;车轮多边形比钢轨波磨对垂向力的影响更大;不同多边形阶次、幅值下,轮轨综合磨耗工况对轴箱、轮对以及钢轨垂向振动加速度影响更大。车轮多边形安全限值更小,多边形幅值限值平均降低了25.9%,在轮轨综合磨耗作用下更易超出限值;当速度为300 km/h,提出了钢轨波磨和车轮多边形阶次在一定范围内的安全限值。
  • 图  1  Mwheel测试仪及现场测量位置

    Figure  1.  Mwheel test instrument and on-site measurement location

    图  2  实测20阶车轮多边形测试结果

    Figure  2.  Measured 20-order wheel polygon test results

    图  3  钢轨表面不平顺

    Figure  3.  Roughness on the rail surface

    图  4  动力学拓扑

    Figure  4.  Dynamic topology

    图  5  ANSYS求解轮对模态流程图

    Figure  5.  ANSYS solution process for wheelset modal analysis

    图  6  ANSYS与UM联合建模流程

    Figure  6.  ANSYS and UM joint modeling process

    图  7  刚柔耦合动力学模型建立流程

    Figure  7.  The process for establishing a rigid-flexible coupled dynamic model

    图  8  不同速度下轮轨垂向力最大值对比

    Figure  8.  Comparison of maximum vertical forces between different speeds of wheel-rail contact

    图  9  轮轨垂向力频域

    Figure  9.  The frequency domain of vertical forces atwheel-rail contact

    图  10  轮轨垂向力时域

    Figure  10.  The time domain of vertical forces at wheel-rail contact

    图  11  轮轨垂向力频域

    Figure  11.  The frequency domain of vertical forces atwheel-rail contact

    图  12  不同阶次下轮轨垂向力最大值对比

    Figure  12.  Comparison of maximum vertical forces between different orders of wheel-rail contact

    图  13  不同幅值下轮轨垂向力最大值对比

    Figure  13.  Comparison of maximum vertical forces at different amplitudes of wheel-rail contact

    图  14  轮轨综合磨耗下随波长变化的轴箱垂向振动加速度

    Figure  14.  Axle box vertical vibration acceleration with varying wavelengths under comprehensive wheel-rail wear

    图  15  轮轨综合磨耗下随波长变化的轮对垂向振动加速度

    Figure  15.  Wheel vertical vibration acceleration with varying wavelengths under comprehensive wheel-rail wear

    图  16  轮轨综合磨耗下随波长变化的钢轨垂向振动加速度

    Figure  16.  Rail vertical vibration acceleration with varying wavelengths under comprehensive wheel-rail wear

    图  17  轮轨综合磨耗下随波长变化的振动加速度最大值

    Figure  17.  Maximum value of vibration acceleration with varying wavelengths under comprehensive wheel-rail wear

    图  18  不同阶次下的振动加速度最大值对比

    Figure  18.  Comparison of maximum vibration acceleration values at different orders

    图  19  不同幅值下的振动加速度最大值对比

    Figure  19.  Comparison of maximum vibration acceleration values at different amplitudes

    图  20  不同速度级下的多边形幅值限值

    Figure  20.  Polygon amplitude limits at different speed levels

    图  21  不同波长、阶次下车轮多边形幅值限值

    Figure  21.  Polygon amplitude limits at different speed levels

    图  22  不同波深、阶次下车轮多边形幅值限值

    Figure  22.  Polygon amplitude limits at differentwave depths and orders

    表  1  不同阶次车轮多边形的特征频率

    Table  1.   Characteristic frequencies of different-order wheel polygons Hz

    阶数速度/(km·h−1
    200250300350
    10192.3130240.3920288.4700288.4700
    12230.7760288.4700346.1640346.1640
    14269.2391336.5488403.8586403.8586
    16307.7018384.6272461.5527461.5527
    18346.1645432.7056519.2467519.2467
    20384.6272480.7840576.9408576.9408
    22423.0899528.8624634.6349634.6349
    24461.5527576.9408692.3290692.3290
    26500.0154625.0192750.0231750.0231
    28538.4781673.0976807.7172807.7172
    30576.9408721.1760865.4112865.4112
    下载: 导出CSV

    表  2  车辆基本参数

    Table  2.   Basic vehicle parameters

    转向架中心距/mm17375
    轴距/mm 2500
    车轮滚动圆横向跨距/mm 1493
    车轮滚动圆直径/mm 920
    车体质量/t 38.884
    构架质量/kg 2200
    轮对质量/kg 1517
    车轮型面 S1002G
    钢轨型面 CN60
    下载: 导出CSV

    表  3  轮对前36阶模态频率

    Table  3.   ANSYS solution process for wheelset modal analysis

    阶数模态
    频率/Hz
    阶数模态
    频率/Hz
    阶数模态
    频率/Hz
    1013203.9125580.86
    2014206.6526580.86
    31.44 × 10−315234.8627637.32
    41.68 × 10−316290.0328637.32
    52.01 × 10−317327.1329742.55
    62.06 × 10−318351.6830810.89
    771.44119351.6831810.89
    875.87420360.0632822.89
    975.87421360.0633822.89
    10135.0322360.0634958
    11135.0323360.0635958
    12203.9124380.6636958
    下载: 导出CSV
  • [1] PENG B, IWNICKI S, SHACKLETON P, et al. General conditions for railway wheel polygonal wear to evolve[J]. Vehicle System Dynamics, 2021, 59(4): 568-587. doi: 10.1080/00423114.2019.1697458
    [2] MAZILU T, DUMITRIU M, TUDORACHE C. Wheel/Rail interaction due to the polygonal wheel[J]. UPB Scientific Bulletin, Series D:Mechanical Engineering, 2011, 73(3): 95-108.
    [3] WU X W, RAKHEJA S, QU S, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1817-1837. doi: 10.1080/00423114.2018.1439589
    [4] 周殿买, 杨集友, 徐彬. 动车组车轮多边形机理分析[J]. 城市轨道交通研究, 2017, 20(2): 25-27. doi: 10.16037/j.1007-869x.2017.02.005

    ZHOU D M, YANG J Y, XU B. Analysis of EMU wheel polygonization mechanism[J]. Urban Mass Transit, 2017, 20(2): 25-27. (in Chinese) doi: 10.16037/j.1007-869x.2017.02.005
    [5] 李伟, 李言义, 张雄飞, 等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报, 2013, 49(18): 17-22. doi: 10.3901/JME.2013.18.017

    LI W, LI Y Y, ZHANG X F, et al. Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22. (in Chinese) doi: 10.3901/JME.2013.18.017
    [6] 陈伟. 高速列车车轮多边形问题研究[D]. 成都: 西南交通大学, 2014

    CHEN W. Research on wheel polygonization of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [7] 杨晓璇, 李伟, 陶功权, 等. A型地铁车辆车轮多边形磨损成因初探[J]. 机械制造与自动化, 2019, 48(4): 22-25.

    YANG X X, LI W, TAO G Q, et al. Preliminary analysis of mechanism of wheel polygon wear of type a metro vehicle[J]. Machine Building & Automation, 2019, 48(4): 22-25. (in Chinese)
    [8] 李霞, 李伟, 温泽峰, 等. 普通短轨枕轨道结构钢轨波磨初步研究[J]. 机械工程学报, 2013, 49(2): 109-115. doi: 10.3901/JME.2013.02.109

    LI X, LI W, WEN Z F, et al. Preliminary study on the rail corrugation of the fixed-dual short sleepers track[J]. Journal of Mechanical Engineering, 2013, 49(2): 109-115. (in Chinese) doi: 10.3901/JME.2013.02.109
    [9] 肖乾, 程树, 张海, 等. 车轮谐波磨耗对直线线路上高速轮轨接触蠕滑特性的影响[J]. 中国铁道科学, 2016, 37(6): 60-68.

    XIAO Q, CHENG S, ZHANG H, et al. Influence of wheel harmonic wear on creep characteristics of high speed wheel-rail contact on straight line[J]. China Railway Science, 2016, 37(6): 60-68. (in Chinese)
    [10] 吴越, 韩健, 左齐宇, 等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报, 2020, 56(17): 198-208. doi: 10.3901/JME.2020.17.198

    WU Y, HAN J, ZUO Q Y, et al. Effect of rail corrugation on Initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208. (in Chinese) doi: 10.3901/JME.2020.17.198
    [11] GÓMEZ I, VADILLO E G. A linear model to explain short pitch corrugation on rails[J]. Wear, 2003, 255(7-12): 1127-1142. doi: 10.1016/S0043-1648(03)00282-5
    [12] CORREA N, OYARZABAL O, VADILLO E G, et al. Rail corrugation development in high speed lines[J]. Wear, 2011, 271(9-10): 2438-2447. doi: 10.1016/j.wear.2010.12.028
    [13] LI Z L, ZHAO X, DOLLEVOET R, et al. Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects[J]. Vehicle System Dynamics, 2008, 46(S1): 237-246.
    [14] 赵新利, 吴越, 郭涛, 等. 车轮多边形磨耗统计规律及关键影响因素分析[J]. 振动、测试与诊断, 2020, 40(1): 48-53. doi: 10.16450/j.cnki.issn.1004-6801.2020.01.008

    ZHAO X L, WU Y, GUO T, et al. The statistical research and induction factor of polygonal wear of high-speed train wheels[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(1): 48-53. (in Chinese) doi: 10.16450/j.cnki.issn.1004-6801.2020.01.008
    [15] 金学松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001

    JIN X S, WU Y, LIANG S L, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.01.001
    [16] 金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. doi: 10.3901/JME.2020.16.118

    JIN X S, WU Y, LIANG S L, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) doi: 10.3901/JME.2020.16.118
    [17] WU X W. An investigation of high-order polygonal wheel wear in high-speed rail vehicles[D]. Montreal: Concordia University, 2018
    [18] 袁玄成, 王开云, 閤鑫, 等. 轨道不平顺波长和幅值对高速动车组动力学性能的影响分析[J]. 交通信息与安全, 2018, 36(2): 1-9. doi: 10.3963/j.issn.1674-4861.2018.02.001

    YUAN X C, WANG K Y, GE X, et al. Influences of track irregularity wavelength and amplitude on dynamic performance of high-speed EMU[J]. Journal of Transport Information and Safety, 2018, 36(2): 1-9. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.02.001
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  81
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回