留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声Lamb波监测铝合金结构疲劳裂纹扩展实验研究

王壮杰 严刚 郭树祥 汤剑飞

王壮杰,严刚,郭树祥, 等. 超声Lamb波监测铝合金结构疲劳裂纹扩展实验研究[J]. 机械科学与技术,2023,42(8):1366-1372 doi: 10.13433/j.cnki.1003-8728.20220084
引用本文: 王壮杰,严刚,郭树祥, 等. 超声Lamb波监测铝合金结构疲劳裂纹扩展实验研究[J]. 机械科学与技术,2023,42(8):1366-1372 doi: 10.13433/j.cnki.1003-8728.20220084
WANG Zhuangjie, YAN Gang, GUO Shuxiang, TANG Jianfei. Experimental Study on Monitoring of Fatigue Crack Growth for Aluminum Alloy Structure with Ultrasonic Lamb Waves[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1366-1372. doi: 10.13433/j.cnki.1003-8728.20220084
Citation: WANG Zhuangjie, YAN Gang, GUO Shuxiang, TANG Jianfei. Experimental Study on Monitoring of Fatigue Crack Growth for Aluminum Alloy Structure with Ultrasonic Lamb Waves[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1366-1372. doi: 10.13433/j.cnki.1003-8728.20220084

超声Lamb波监测铝合金结构疲劳裂纹扩展实验研究

doi: 10.13433/j.cnki.1003-8728.20220084
基金项目: 国家自然科学基金项目(11602104)与南京航空航天大学基本科研业务费项目(NS2021002)
详细信息
    作者简介:

    王壮杰(1994−),硕士研究生,研究方向为结构疲劳断裂,zhuangjie123@nuaa.edu.cn

    通讯作者:

    郭树祥,副教授,硕士生导师,nuaagsx@nuaa.edu.cn

  • 中图分类号: V214.4

Experimental Study on Monitoring of Fatigue Crack Growth for Aluminum Alloy Structure with Ultrasonic Lamb Waves

  • 摘要: 对应用超声Lamb波在线监测金属结构裂纹在疲劳载荷作用下的扩展进行了实验研究。制备了含中心裂纹的铝合金平板结构试件,并在试件表面布设了压电晶片传感网络。疲劳实验中,在观测裂纹扩展的同时,采用压电晶片分别进行Lamb波信号的激励和接收,监测驱动器与传感器间的疲劳裂纹扩展行为。通过时域信号处理提取了Lamb波信号峰值点的幅值(AMP)与传播时间(ToF)特征,由柯西隶属度函数定义了改进的信号健康度指标及相应的损伤指标,并评估了健康度指标和损伤指标随裂纹扩展的变化趋势。最后,结合损伤概率成像方法,融合Lamb波激励-接收路径的所有损伤指标,近似表征了裂纹长度的变化,验证了该方法的可行性和有效性。
  • 图  1  试件尺寸与传感器分布

    Figure  1.  Specimen dimensions and sensor distribution

    图  2  疲劳试验现场

    Figure  2.  Fatigue test site

    图  3  疲劳裂纹扩展曲线

    Figure  3.  Fatigue crack growth curve

    图  4  中心频率为250 kHz的窄带正弦波激励信号

    Figure  4.  The narrowband sinusoidal excitation signal with a center frequency of 250 kHz

    图  5  Lamb波传感路径分布

    Figure  5.  Lamb wave signals under different fatigue cycles

    图  6  不同疲劳循环下的Lamb波信号

    Figure  6.  Distribution of Lamb wave sensing paths

    图  7  接收波信号的最大峰值点ToF隶属度变化情况

    Figure  7.  Variation in the degree of ToF membership for the maximum peak of received wave signals

    图  8  接收波信号的最大峰值点AMP隶属度变化情况

    Figure  8.  Variation in the degrees of AMP membership degree for the maximum peak of received wave signals

    图  9  损伤指标DI随疲劳循环次数变化情况

    Figure  9.  The variation of DI with fatigue cycles

    图  10  损伤指标DI随裂纹长度变化情况

    Figure  10.  The variation of DI with crack length

    图  11  损伤成像结果

    Figure  11.  Damage imaging results

    图  12  0 ~ 38000次疲劳循环下h=75 mm高度云图指标

    Figure  12.  Cloud map index of h=75 mm for 0 to 38 000 fatigue cycles

    图  13  损伤成像方法识别的裂纹扩展情况

    Figure  13.  Crack propagation identified by the damage imaging method

  • [1] PINTO A L, ARAÚJO J A, TALEMI R. Effects of fretting wear process on fatigue crack propagation and life assessment[J]. Tribology International, 2021, 156: 106787. doi: 10.1016/j.triboint.2020.106787
    [2] XU L, YU X, LI H, et al. Fatigue life prediction of aviation aluminium alloy based on quantitative pre-corrosion damage analysis[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1353-1362. doi: 10.1016/S1003-6326(17)60156-0
    [3] 常琦, 杨维希, 赵恒, 等. 基于多传感器的裂纹扩展监测研究[J]. 航空学报, 2020, 41(2): 223336.

    CHANG Q, YANG W X, ZHAO H, et al. A multi-sensor based crack propagation monitoring research[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223336. (in Chinese)
    [4] DRAGAN K, DZIENDZIKOWSKI M, KURNYTA A, et al. An on-line multiway approach to in-situ NDI looking at the PZL-130TCII[J]. Fatigue of Aircraft Structures, 2014, 2013(5): 5-11. doi: 10.2478/fas-2013-0001
    [5] BARSKI M, STAWIARSKI A. The crack detection and evaluation by elastic wave propagation in open hole structures for aerospace application[J]. Aerospace Science and Technology, 2018, 81: 141-156. doi: 10.1016/j.ast.2018.07.045
    [6] QING X L, LI W Z, WANG Y S, et al. Piezoelectric transducer-based structural health monitoring for aircraft applications[J]. Sensors, 2019, 19(3): 545. doi: 10.3390/s19030545
    [7] DZIENDZIKOWSKI M, DRAGAN K, KURNYTA A, et al. Health monitoring of the aircraft structure during a full scale fatigue test with use of an active piezoelectric sensor network[J]. Solid State Phenomena, 2015, 220-221: 328-332. doi: 10.4028/www.scientific.net/SSP.220-221.328
    [8] SU Z Q, CHAO Z, MING H, et al. Acousto-ultrasonics-based fatigue damage characterization: linear versus nonlinear signal features[J]. Mechanical Systems and Signal Processing, 2014, 45(1): 225-239. doi: 10.1016/j.ymssp.2013.10.017
    [9] 张正罡, 刘丹, 他得安. 多通道超声兰姆波检测板状结构中的裂纹[J]. 应用声学, 2015, 34(3): 189-194.

    ZHANG Z G, LIU D, TA D A. Detection of crack in plate structure using multi-channel ultrasonic Lamb waves[J]. Journal of Applied Acoustics, 2015, 34(3): 189-194. (in Chinese)
    [10] ZHOU J Y, XIAO L, QU W Z, et al. Nonlinear Lamb wave based DORT method for detection of fatigue cracks[J]. NDT & E International, 2017, 92: 22-29.
    [11] 杨伟博, 袁慎芳, 邱雷. 基于Lamb波的平尾大轴裂纹扩展监测[J]. 振动、测试与诊断, 2018, 38(1): 143-147. doi: 10.16450/j.cnki.issn.1004-6801.2018.01.022

    YANG W B, YUAN S F, QIU L. Crack Growth monitoring of horizontal stabilizer shaft based on Lamb wave[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 143-147. (in Chinese) doi: 10.16450/j.cnki.issn.1004-6801.2018.01.022
    [12] WANG D J, HE J J, GUAN X F, et al. A model assessment method for predicting structural fatigue life using Lamb waves[J]. Ultrasonics, 2018, 84: 319-328. doi: 10.1016/j.ultras.2017.11.017
    [13] 汤剑飞, 严刚, 蔡晨宁. 温度影响下基于应力波的钛合金试件疲劳裂纹监测实验研究[J]. 实验力学, 2015, 30(1): 23-30. doi: 10.7520/1001-4888-14-064

    TANG J F, YAN G, CAI C N. Experimental study of temperature effect on fatigue crack monitoring for titanium alloy specimen based on stress wave[J]. Journal of Experimental Mechanics, 2015, 30(1): 23-30. (in Chinese) doi: 10.7520/1001-4888-14-064
    [14] YELVE N P, TSE P W, MASURKAR F. Theoretical and experimental evaluation of material nonlinearity in metal plates using Lamb waves[J]. Structural Control and Health Monitoring, 2018, 25(6): e2164. doi: 10.1002/stc.2164
    [15] CANTERO-CHINCHILLA S, ARANGUREN G, ROYO J M, et al. Structural health monitoring using ultrasonic guided-waves and the degree of health index[J]. Sensors, 2021, 21(3): 993. doi: 10.3390/s21030993
    [16] 蒋泽军. 模糊数学理论与方法[M]. 北京: 电子工业出版社, 2015

    JIANG Z J. Theory and method of fuzzy mathematics[M]. Beijing: Publishing House of Electronics Industry, 2015. (in Chinese)
    [17] ZHOU C, SU Z Q, CHENG L. Probability-based diagnostic imaging using hybrid features extracted from ultrasonic Lamb wave signals[J]. Smart Materials and Structures, 2011, 20(12): 125005. doi: 10.1088/0964-1726/20/12/125005
    [18] 王强, 胥静, 王梦欣, 等. 结构裂纹损伤的Lamb波层析成像监测与评估研究[J]. 机械工程学报, 2016, 52(6): 30-36. doi: 10.3901/JME.2016.06.030

    WANG Q, XU J, WANG M X, et al. Lamb wave tomography technique for crack damage detection[J]. Journal of Mechanical Engineering, 2016, 52(6): 30-36. (in Chinese) doi: 10.3901/JME.2016.06.030
    [19] ZHOU C, SU Z Q, CHENG L. Quantitative evaluation of orientation-specific damage using elastic waves and probability-based diagnostic imaging[J]. Mechanical Systems and Signal Processing, 2011, 25(6): 2135-2156. doi: 10.1016/j.ymssp.2011.02.001
    [20] MOTAMED P K, ABEDIAN A, NASIRI M. Optimal sensors layout design based on reference-free damage localization with lamb wave propagation[J]. Structural Control and Health Monitoring, 2020, 27(4): e2490.
  • 加载中
图(13)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  54
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回