留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩式胶筒结构优化及裸眼密封性能分析

钟功祥 钟升级 程柯文

钟功祥,钟升级,程柯文. 压缩式胶筒结构优化及裸眼密封性能分析[J]. 机械科学与技术,2023,42(8):1261-1269 doi: 10.13433/j.cnki.1003-8728.20220082
引用本文: 钟功祥,钟升级,程柯文. 压缩式胶筒结构优化及裸眼密封性能分析[J]. 机械科学与技术,2023,42(8):1261-1269 doi: 10.13433/j.cnki.1003-8728.20220082
ZHONG Gongxiang, ZHONG Shengji, CHENG Kewen. Structurally Optimizing Rubber Cylinder of Compression Packer and Analyzing Its Open-eye Sealing Performance[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1261-1269. doi: 10.13433/j.cnki.1003-8728.20220082
Citation: ZHONG Gongxiang, ZHONG Shengji, CHENG Kewen. Structurally Optimizing Rubber Cylinder of Compression Packer and Analyzing Its Open-eye Sealing Performance[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1261-1269. doi: 10.13433/j.cnki.1003-8728.20220082

压缩式胶筒结构优化及裸眼密封性能分析

doi: 10.13433/j.cnki.1003-8728.20220082
基金项目: 省部共建“石油天然气装备”教育部重点实验室(西南石油大学)项目(2019sts03)
详细信息
    作者简介:

    钟功祥 (1962−),教授,硕士生导师,硕士,研究方向为石油机械工程,973786455@qq.com

  • 中图分类号: TE931

Structurally Optimizing Rubber Cylinder of Compression Packer and Analyzing Its Open-eye Sealing Performance

  • 摘要: 压缩式封隔器广泛用于油田分层开采工艺,其胶筒的坐封通过高压流体作用在活塞上压缩胶筒或管柱来实现。现场作业发现:压缩式胶筒离载荷端较远,且大多采用单向加载,导致坐封不完全,接触应力与密封性能系数较低。针对上述问题,基于Mooney-Rivlin超弹模型、胶管变形及接触非线性理论,建立压缩式胶筒组有限元计算模型,从内衬套和防肩突结构开展单因素分析,并对其裸眼密封性能进行研究,结果表明:三角形内衬套能有效提高胶筒中部接触应力;金属圆环防突结构能提高胶筒密封性能系数;与常规压缩式封隔器相比,优化后的压缩式封隔器密封性能显著提高;裸眼井壁的不规则程度在一定范围内时,对封隔器的密封性能影响不大。
  • 图  1  肩突值定义

    Figure  1.  Definition of shoulder protrusion value

    图  2  压缩式胶筒组结构参数

    Figure  2.  The structural parameters of the compression-type rubber cylinder assembly

    图  3  压缩式胶筒组Mises应力云图

    Figure  3.  Mises stress cloud map of compression-type rubber cylinder assembly

    图  4  胶筒组沿轴向距离的接触应力曲线

    Figure  4.  The contact stress curve along the axial distance of the cylinder assembly

    图  5  3种内衬套结构参数

    Figure  5.  Structural parameters of three types of inner liner

    图  6  不同内衬套结构胶筒组的接触应力曲线

    Figure  6.  Contact stress curves of cylinder assemblies with different inner liner structures

    图  7  不同内衬套结构胶筒组的密封性能系数曲线

    Figure  7.  Coefficient of sealing performance curves for cylinder assemblies with different inner liner structures

    图  8  不同内衬套结构肩突曲线、压缩距柱状及胶筒变形图

    Figure  8.  Shoulder protrusion curves, compressed distance cylinder charts, and cylinder deformation maps for cylinder assemblies with different inner liner structures

    图  9  两种防突结构结构参数

    Figure  9.  Structural parameters of two types of anti-protrusion structures

    图  10  3种结构胶筒组的接触应力曲线

    Figure  10.  Contact stress curves for three types of cylinder assemblies with different structures

    图  11  3种结构胶筒组的密封性能系数曲线

    Figure  11.  Coefficient of sealing performance curves for three types of cylinder assemblies with different structures

    图  12  3种结构胶筒的肩突值曲线图、压缩距柱状图

    Figure  12.  Shoulder protrusion value curves and compressed distance cylinder charts for three types of cylinder assemblies with different structures

    图  13  3种结构胶筒变形图

    Figure  13.  Deformation maps of three types of cylinder assemblies with different structures

    图  14  优化前后胶筒变形位移对比图

    Figure  14.  Comparison of cylinder deformation displacement before and after optimization

    图  15  优化前后胶筒接触应力对比曲线

    Figure  15.  Comparison of cylinder contact stress curves before and after optimization

    图  16  不规则裸眼井壁三维模型图

    Figure  16.  A three-dimensional model of irregular open-hole well walls

    图  17  压缩式胶筒组在裸眼井壁的接触应力云图

    Figure  17.  Contact stress cloud map of compression-type rubber cylinder assembly on an open hole well wall

    图  18  周向接触应力曲线

    Figure  18.  Circumferential contact stress curve

    图  19  轴向接触应力曲线

    Figure  19.  Axial contact stress curve

    表  1  橡胶材料本构模型力学性能常数

    Table  1.   Mechanical performance constants for rubber material constitutive models

    胶筒硬度弹性模量C10C01
    75 HA 8.76 MPa 1.124 0.056
    80 HA 10.98 MPa 1.533 0.0767
    85 HA 13.80 MPa 1.926 0.963
    下载: 导出CSV

    表  2  优化前后值与优化预测值分析表

    Table  2.   Analysis of values before and after optimization and predicted optimization values

    状况最大接触应力密封性能系数肩突值
    优化后 12.9 MPa 732.8 MPa·mm 1.28 mm
    优化前 13.4 MPa 554.9 MPa·mm 5.8 mm
    下载: 导出CSV
  • [1] 王禹衡. 封隔器坐封系统结构优化及弯曲井眼下入可行性研究[D]. 成都: 西南石油大学, 2019

    WANG Y H. Packer setting system structure optimization and feasibility study of bending well bore[D]. Chengdu: Southwest Petroleum University, 2019. (in Chinese)
    [2] 张紫峣. 水平井裸眼分压管柱工艺悬挂系统研究[D]. 北京: 中国石油大学(北京), 2018

    ZHANG Z Y. Study on the suspension system of the horizontal well in the process of the bare-eye tube column[D]. Beijing: China University of Petroleum (Beijing), 2018. (in Chinese)
    [3] 杨秀娟, 闫相祯, 贾善坡. 封隔器胶筒大变形的粘-滑摩擦接触分析[J]. 机械强度, 2006, 28(2): 229-234. doi: 10.3321/j.issn:1001-9669.2006.02.015

    YANG X J, YAN X Z, JIA S P. Frictional contact analysis of packer rubber with large deformation based on adhesive-slip frictional contact method[J]. Journal of Mechanical Strength, 2006, 28(2): 229-234. (in Chinese) doi: 10.3321/j.issn:1001-9669.2006.02.015
    [4] 张丽娟, 赵广民, 赵粉霞, 等. 压缩式裸眼封隔器的研制与应用[J]. 石油机械, 2012, 40(12): 82-85.

    ZHANG L J, ZHAO G M, ZHAO F X, et al. Development and application of the compression open hole packer[J]. China Petroleum Machinery, 2012, 40(12): 82-85. (in Chinese)
    [5] 李强. 水平井裸眼分段压裂管柱密封性能研究[D]. 成都: 西南石油大学, 2014

    LI Q. Study on sealing performance of staged fracturing string in horizontal well open hole[D]. Chengdu: Southwest Petroleum University, 2014. (in Chinese)
    [6] POLONSKY V L, TYURIN A P. Design of packers for sealing of the inter-tube space in equipment used for recovery of oil and gas[J]. Chemical and Petroleum Engineering, 2015, 51(1-2): 37-40. doi: 10.1007/s10556-015-9994-2
    [7] 杨柳. 水平井无限级压裂工具设计与数值模拟[D]. 青岛: 中国石油大学(华东), 2018

    YANG L. Numerical simulation and design of multistage unlimited fracturing tools in horizontal wells[D]. Qingdao: China University of Petroleum (East China), 2018. (in Chinese)
    [8] 李飞. Mullins诱导各向异性研究及橡胶弹性元件多向刚度分析[D]. 株洲: 湖南工业大学, 2015

    LI F. The study on Mullins induced anisotropic and multi-directional stiffness analysis of rubber elastic components[D]. Zhuzhou: Hunan University of Technology, 2015. (in Chinese)
    [9] 代晓东. 最优化理论求解钻柱接触非线性问题[D]. 大庆: 大庆石油学院, 2015

    DAI X D. Solve the nonlinear contacted problem between drillstring and hole wall by the optimization method[D]. Daqing: Daqing Petroleum Institute, 2015. (in Chinese)
    [10] 水浩澈. 考虑温度时压裂式封隔器胶筒的可靠性研究[D]. 天津: 天津科技大学, 2019

    SHUI H C. Study on reliability of fracture packer rubber considering temperature[D]. Tianjin: Tianjin University of Science & Technology, 2019. (in Chinese)
    [11] 陈大彬, 朱荣达, 吴涛, 等. 基于Mooney-Rivlin模型的智能封堵器胶筒有限元分析[J]. 长江大学学报(自科版), 2013, 10(19): 99-101

    CHEN D B, ZHU R D, WU T, et al. Finite element analysis of the rubber cylinder of intelligent occluder based on Mooney-Rivlin model[J] Journal of Yangtze University (Natural Science Edition), 2013, 10(19): 99-101. (in Chinese)
    [12] 张凡. 水平井分段压裂压缩式裸眼封隔器研制[D]. 青岛: 中国石油大学(华东), 2016

    ZHANG F. Research and manufacturing of compressible open hole packer for horizontal section fracturing[D]. Qingdao: China University of Petroleum (East China), 2016. (in Chinese)
    [13] 张付英, 姜向敏. 压缩式密封胶筒的密封可靠性分析与研究[J]. 机械设计, 2018, 35(6): 65-69. doi: 10.13841/j.cnki.jxsj.2018.06.011

    ZHANG F Y, JIANG X M. Sealing reliability analysis and research on the compression seal rubber tube[J]. Journal of Machine Design, 2018, 35(6): 65-69. (in Chinese) doi: 10.13841/j.cnki.jxsj.2018.06.011
    [14] 李天天. 高压压裂用封隔器胶筒的密封可靠性研究[D]. 天津: 天津科技大学, 2019

    LI T T. Study on sealing reliability of packer rubber for high pressure fracturing[D]. Tianjin: Tianjin University of Science & Technology, 2019. (in Chinese)
    [15] 张敏. Y443封隔器密封机构工作性能仿真分析[D]. 成都: 西南石油大学, 2016

    ZHANG M. Simulation analysis of working performance of Y443 packer sealing mechanism[D]. Chengdu: Southwest Petroleum University, 2016. (in Chinese)
    [16] 徐俊峰, 罗远新, 王传瑶. 新型封隔器胶筒橡胶本构模型选择及结构参数优化[J]. 制造业自动化, 2019, 41(1): 53-56. doi: 10.3969/j.issn.1009-0134.2019.01.012

    XU J F, LUO Y X, WANG C Y. Rubber constitutive model selection and structural parameters optimization of the new packer[J]. Manufacturing Automation, 2019, 41(1): 53-56. (in Chinese) doi: 10.3969/j.issn.1009-0134.2019.01.012
    [17] 闫泽, 唐德威, 邓宗全, 等. 一种裸眼井壁几何模型的构造方法[J]. 哈尔滨工业大学学报, 2009, 41(7): 49-53. doi: 10.3321/j.issn:0367-6234.2009.07.011

    YAN Z, TANG D W, DENG Z Q, et al. Method of constructing geometric model of open hole wall[J]. Journal of Harbin Institute of Technology, 2009, 41(7): 49-53. (in Chinese) doi: 10.3321/j.issn:0367-6234.2009.07.011
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  28
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-28
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回