留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

精密机床电主轴静压轴承制造误差对性能的影响

贾谦 阮琪 王贺 吴世杰 崔展 闫菲菲 杨帅

贾谦,阮琪,王贺, 等. 精密机床电主轴静压轴承制造误差对性能的影响[J]. 机械科学与技术,2023,42(8):1242-1248 doi: 10.13433/j.cnki.1003-8728.20220065
引用本文: 贾谦,阮琪,王贺, 等. 精密机床电主轴静压轴承制造误差对性能的影响[J]. 机械科学与技术,2023,42(8):1242-1248 doi: 10.13433/j.cnki.1003-8728.20220065
JIA Qian, RUAN Qi, WANG He, WU Shijie, CUI Zhan, YAN Feifei, YANG Shuai. Study on Influence of Manufacturing Errors on Performance of Spindle Hydrostatic Bearing in Precision Machine Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1242-1248. doi: 10.13433/j.cnki.1003-8728.20220065
Citation: JIA Qian, RUAN Qi, WANG He, WU Shijie, CUI Zhan, YAN Feifei, YANG Shuai. Study on Influence of Manufacturing Errors on Performance of Spindle Hydrostatic Bearing in Precision Machine Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1242-1248. doi: 10.13433/j.cnki.1003-8728.20220065

精密机床电主轴静压轴承制造误差对性能的影响

doi: 10.13433/j.cnki.1003-8728.20220065
基金项目: 科技部创新方法工作专项(2019MO10203)与2022年陕西省教育厅研究计划项目(22JK0446)
详细信息
    作者简介:

    贾谦(1981−),讲师,博士,研究方向为现代机械设计、现代测试技术,qianjia@mail.xjtu.edu.cn

  • 中图分类号: TH133.36

Study on Influence of Manufacturing Errors on Performance of Spindle Hydrostatic Bearing in Precision Machine Tool

  • 摘要: 分析了精密机床主轴静压轴承节流器孔径d0、轴承半径间隙h0、油腔长度L和油腔宽度B等参数的制造误差,选取了制造误差影响较大的节流孔径d0和半径间隙h0作为分析的对象;建立了考虑节流孔径误差εd和半径间隙误差εh的静压轴承性能计算模型,计算分析了εdεh影响下的轴承刚度J和回转精度e,并通过试验对理论分析结果进行了验证。研究结果表明:制造误差εdεhJ的影响随载荷W的增加而增大,W为600 N、εd为0.05 mm时的J值是εd为−0.05 mm时的1.34倍,εh为10 μm时的J值仅为εh为−10 μm时的29.9%;对于eεd会带来1 μm左右的影响,εh会带来2 μm左右的影响。
  • 图  1  高精密静压主轴结构

    Figure  1.  High-precision hydrostatic main shaft structure

    图  2  静压轴承的结构

    Figure  2.  Hydrostatic bearing structure

    图  3  节流器和润滑系统

    Figure  3.  Throttling device and lubrication system

    图  4  半径间隙示意图

    Figure  4.  Schematic diagram of radial clearance

    图  5  油腔尺寸示意图

    Figure  5.  Schematic diagram of oil chamber dimensions

    图  6  轴承承载图

    Figure  6.  Load diagram for the bearing

    图  7  考虑制造误差的计算流程

    Figure  7.  Calculation process considering manufacturing errors

    图  8  小孔直径误差-油膜刚度关系

    Figure  8.  The relationship between small hole diameter error and oil film rigidity

    图  9  半径间隙误差-油膜刚度关系

    Figure  9.  The relationship between radial clearance error and oil film rigidity

    图  10  小孔直径-轴径位移关系

    Figure  10.  The relationship between small hole diameter and shaft displacement

    图  11  半径间隙-轴径位移关系

    Figure  11.  The relationship between radial clearance and shaft displacement

    图  12  试验轴承及试验台

    Figure  12.  Experimental bearing and test rig

    表  1  静压轴承的结构参数

    Table  1.   Structural parameters for the hydrostatic bearing

    参数数值
    轴承内径D/mm 80
    轴承宽度L/mm 95
    轴向封油面宽度L1/mm 8
    回油槽宽度b1/mm 4
    小孔节流比β 1.71
    半径间隙h0/mm 0.04
    半静压腔包角θ1/(°) 22.5
    润滑液黏度μ/(N·s·cm3 1.32 × 10−6
    下载: 导出CSV

    表  2  静压轴承的刚度及回转精度测试结果

    Table  2.   Rigidity and rotational accuracy test results for the hydrostatic bearing

    参数数值
    刚度J/ (N·μm−1) 25 ~ 44
    水平振幅ex/μm 2.6 ~ 10.1
    垂直振幅ey/μm 2.8 ~ 9.6
    下载: 导出CSV
  • [1] 张健. 精密静压转台关键部件设计及试验研究[D]. 西安: 西安理工大学, 2017

    ZHANG J. Design and experimental research of precision hydrostatic rotary table key parts[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)
    [2] 薛飞. 全静压超精密铣磨机床设计关键技术及精度研究[D]. 西安: 西安交通大学, 2012

    XUE F. Key design techniques and accuracy research on the ultra-precision grinding machine with hydrostatic supports[D]. Xi'an: Xi'an Jiaotong University, 2012. (in Chinese)
    [3] 贾谦. 巴氏合金与石墨轴承的制造工艺、质检与性能试验研究[D]. 西安: 西安交通大学, 2017

    JIA Q. Study on the manufacturing process, quality and performance test of babbit and graphite bearing[D]. Xi'an: Xi'an Jiaotong University, 2017. (in Chinese)
    [4] 贾谦, 李跃宗, 陈润霖, 等. 面向高速工况的轴承材料成形工艺[J]. 中国机械工程, 2014, 25(21): 2860-2864. doi: 10.3969/j.issn.1004-132X.2014.21.004

    JIA Q, LI Y Z, CHEN R L, et al. Forming process of bearing materials suitable for high-speed bearings[J]. China Mechanical Engineering, 2014, 25(21): 2860-2864. (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.21.004
    [5] 陈丽婷. 高速、高精度数控铣床电主轴结构优化设计及其性能研究[D]. 杭州: 浙江大学, 2016

    CHEN L T. Structural optimized design and performance study of high speed and high precision CNC milling electric spindle[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [6] 陈润霖, 欧阳武, 王建磊, 等. 动静压轴承支承电主轴服役精度保持用磁力减载研究[J]. 振动与冲击, 2017, 36(12): 25-30. doi: 10.13465/j.cnki.jvs.2017.12.005

    CHEN R L, OUYANG W, WANG J L, et al. Magnetic lightening on service precision keeping of an electric spindle system supported by hybrid bearing[J]. Journal of Vibration and Shock, 2017, 36(12): 25-30. (in Chinese) doi: 10.13465/j.cnki.jvs.2017.12.005
    [7] 陈润霖. 精密机床主轴动静压轴承的性能调控原理和技术研究[D]. 西安: 西安交通大学, 2016

    CHEN R L. Research on property control principle and technology of hybrid bearing for precision machine tool spindle[D]. Xi'an: Xi'an Jiaotong University, 2016. (in Chinese)
    [8] CHEN R L, OUYANG W, SHI Z Y, et al. Characteristic analysis and simulated test of hybrid bearing with the introduction of piezoelectric controller[J]. Shock and Vibration, 2016, 2016: 6874741.
    [9] 杨辉. 航空发动机的精密超精密加工及测试技术[J]. 航空精密制造技术, 2011, 47(4): 63-65. doi: 10.3969/j.issn.1003-5451.2011.04.019

    YANG H. Precision ultraprecision machining and testing technology of aircraft engine[J]. Aviation Precision Manufacturing Technology, 2011, 47(4): 63-65. (in Chinese) doi: 10.3969/j.issn.1003-5451.2011.04.019
    [10] 延育东. 机床电主轴静压轴承的设计及试验[D]. 西安: 西安理工大学, 2017.

    YAN Y D. Design and test of hydrostatic bearing motorized spindle in machine tool[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)
    [11] 谈凌杰. 高精度机床电主轴转子系统动力学分析和应用[D]. 哈尔滨: 哈尔滨工业大学, 2015

    TAN L J. Analysis and applications of high-precision machine tool spindle rotor system[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [12] 胡灿. 可控节流液体静压主轴刚度精度提升机理及其规律研究[D]. 长沙: 湖南大学, 2019

    HU C. Research on the mechanism and law of stiffness and accuracy of the hydrostatic spindle with controllable restrictor[D]. Changsha: Hunan University, 2019. (in Chinese)
    [13] 熊友平. 基于小孔节流静压电主轴轴心轨迹的特性研究[D]. 湘潭: 湖南科技大学, 2018

    XIONG Y P. Study on characteristics of axis locus of hydrostatic spindle based on pinhole throttling[D]. Xiangtan: Hunan University of Science and Technology, 2018. (in Chinese)
    [14] JIA Q, LI B, YUAN Y Y, et al. Axiomatic design method for the hydrostatic spindle with multisource coupled information[J]. Procedia CIRP, 2016, 53: 252-260. doi: 10.1016/j.procir.2016.07.013
    [15] SINGH D V, SINHASAN R, GHAI R C. Finite element analysis of orifice-compensated hydrostatic journal bearings[J]. Tribology International, 1976, 9(6): 281-284. doi: 10.1016/0301-679X(76)90018-9
    [16] BRECHER C, BAUM C, WINTERSCHLADEN M, et al. Simulation of dynamic effects on hydrostatic bearings and membrane restrictors[J]. Production Engineering, 2007, 1(4): 415-420. doi: 10.1007/s11740-007-0051-7
    [17] 李珂. 固定节流式液体静压轴承性能优化设计及计算机辅助设计[D]. 广州: 华南理工大学, 2013

    LI K. Fixed throttle type hydrostatic bearing performance optimizing design and computer aided design[D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
    [18] 王建磊, 王云龙, 门川皓, 等. 精密磨床转台静压轴承的强健化设计[J]. 中国机械工程, 2020, 31(10): 1155-1161. doi: 10.3969/j.issn.1004-132X.2020.10.004

    WANG J L, WANG Y L, MEN C H, et al. Robust design of hydrostatic bearings on precision grinding machine rotary tables[J]. China Mechanical Engineering, 2020, 31(10): 1155-1161. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.10.004
    [19] 胡灿, 熊万里, 孙文彪, 等. 可控节流液体静压主轴回转精度提升的机理研究[J]. 机械工程学报, 2019, 55(11): 160-168. doi: 10.3901/JME.2019.11.160

    HU C, XIONG W L, SUN W B, et al. Research on the mechanism of Improving hydrostatic spindle rotating accuracy with controllable restrictor[J]. Journal of Mechanical Engineering, 2019, 55(11): 160-168. (in Chinese) doi: 10.3901/JME.2019.11.160
    [20] 熊万里, 胡灿, 吕浪, 等. 可控节流参数对液体静压轴承特性的影响研究[J]. 机械工程学报, 2018, 54(21): 63-71. doi: 10.3901/JME.2018.21.063

    XIONG W L, HU C, LYU L, et al. Research on the influence of controllable restrictor parameters on the characteristics of hydrostatic journal bearings[J]. Journal of Mechanical Engineering, 2018, 54(21): 63-71. (in Chinese) doi: 10.3901/JME.2018.21.063
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  62
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回