留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型分段定子开关磁阻电机转矩增强和径向力减小的分析研究

黄朝志 段锦锋 曹文盛

黄朝志, 段锦锋, 曹文盛. 新型分段定子开关磁阻电机转矩增强和径向力减小的分析研究[J]. 机械科学与技术, 2023, 42(7): 1035-1043. doi: 10.13433/j.cnki.1003-8728.20220061
引用本文: 黄朝志, 段锦锋, 曹文盛. 新型分段定子开关磁阻电机转矩增强和径向力减小的分析研究[J]. 机械科学与技术, 2023, 42(7): 1035-1043. doi: 10.13433/j.cnki.1003-8728.20220061
HUANG Chaozhi, DUAN Jinfeng, CAO Wensheng. Research on Torque Enhancement and Radial Force Reduction of Novel Switched Reluctance Motor with Segmental Stators[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1035-1043. doi: 10.13433/j.cnki.1003-8728.20220061
Citation: HUANG Chaozhi, DUAN Jinfeng, CAO Wensheng. Research on Torque Enhancement and Radial Force Reduction of Novel Switched Reluctance Motor with Segmental Stators[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1035-1043. doi: 10.13433/j.cnki.1003-8728.20220061

新型分段定子开关磁阻电机转矩增强和径向力减小的分析研究

doi: 10.13433/j.cnki.1003-8728.20220061
基金项目: 

国家自然科学基金项目 51767009

详细信息
    作者简介:

    黄朝志(1978-), 副教授, 博士, 研究方向为磁阻电机噪声振动分析及电磁场有限元数值计算, huangchaozhi@163.com

  • 中图分类号: TM352

Research on Torque Enhancement and Radial Force Reduction of Novel Switched Reluctance Motor with Segmental Stators

  • 摘要: 开关磁阻电机由于结构简单和启动转矩大等优点应用于许多领域,然而与永磁电机相比,其表现出较低的密度转矩和较大的振动噪声。文中提出一种新型分段定子开关磁阻电机,并在每个定子块两侧增设永磁体,构成分段定子混合励磁开关磁阻电机。首先介绍了拓扑结构和原理,磁路等效法证明了永磁体对气隙磁通加强作用,同时通过有限元仿真得出永磁体对转矩密度的影响并得出优化永磁体厚度。其次建立外转子齿顶开槽模型分析径向力减小的原理,同时对不同槽口宽度和深度模型仿真分析,得到优化尺寸。最后仿真表明,分段定子混合励磁开关磁阻电机的平均转矩提高了34.2%,转矩脉动下降了19.3%,定转子重叠区间的径向力波降低了12.5%,有效降低了径向力,改善了振动噪声。
  • 图  1  6/22 SSHESRM几何结构

    Figure  1.  6/22 SSHESRM geometric structure

    图  2  无电流时的磁通路径

    Figure  2.  Flux path in the absence of current

    图  3  SSHESRM工作原理图

    Figure  3.  SSHESRM working principle diagram

    图  4  SSHESRM等效磁路

    Figure  4.  SSHESRM equivalent magnetic circuit

    图  5  气隙磁密

    Figure  5.  Magnetic flux density in the air gap

    图  6  不同转子位置的静态转矩

    Figure  6.  Static torque at different rotor positions

    图  7  不同永磁体厚度下的平均转矩和转矩脉动

    Figure  7.  Average torque and torque ripple at different permanent magnet thicknesses

    图  8  不同永磁体厚度下的电磁转矩和电感

    Figure  8.  Electromagnetic torque and electric power at different permanent magnet thicknesses

    图  9  磁阻转矩和永磁转矩

    Figure  9.  Reluctance torque and permanent magnetic torque

    图  10  径向力分析

    Figure  10.  Radial force analysis

    图  11  外转子齿顶槽口

    Figure  11.  Outer rotor tooth top slot

    图  12  气隙处磁力线分布

    Figure  12.  Magnetic field line distribution at the air gap

    图  13  不同开槽宽度MN区间径向力波累加值

    Figure  13.  Cumulative radial force wave values at different groove widths in the M and N intervals

    图  14  不同开槽宽度的平均转矩和转矩脉动

    Figure  14.  Average torque and torque ripple at different groove widths

    图  15  不同开槽深度MN区间径向力波累加值

    Figure  15.  Cumulative radial force wave values at different groove depths in the M and N intervals

    图  16  不同开槽宽度的平均转矩和转矩脉动

    Figure  16.  Average torque and torque ripple at different groove widths

    图  17  SSHESRM和分段定子SRM的磁共能

    Figure  17.  Magnetic co-energy of SSHESRM and segmented stator SRM

    图  18  转矩对比

    Figure  18.  Torque comparison

    图  19  MN区间的径向磁密累加值

    Figure  19.  Cumulative radial magnetic flux density values in the M and N intervals

    图  20  径向力波

    Figure  20.  Radial force ripple

    图  21  径向磁吸力

    Figure  21.  Radial magnetic force

    表  1  SSHESRM的主要参数

    Table  1.   Key parameters of SSHESRM

    参数 数值 参数 数值
    定子外径 142.28 mm 转子外径 172 mm
    定子内径 79.28 mm 转子内径 143.48 mm
    定子轭厚 6.83 mm 转子轭厚 6.76 mm
    定子齿高 24.8 mm 转子齿高 7.51 mm
    定子极弧 5.58 mm 转子极弧 5.46 mm
    气隙长度 0.6 mm 轴向长度 100 mm
    硅钢片材料 DW470 永磁体材料 NdFe30
    匝数 55 槽满率 65.4%
    下载: 导出CSV
  • [1] YI F, CAI W. Modeling, control, and seamless transition of the bidirectional battery-driven switched reluctance motor/generator drive based on integrated multiport power converter for electric vehicle applications[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7099-7111.
    [2] 陈美玲, 石瑶, 张云, 等. 高真空工况下开关磁阻电机温度场分析[J]. 电测与仪表, 2020, 57(19): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202019008.htm

    CHEN M L, SHI Y, ZHANG Y, et al. Analysis of temperature field of switched reluctance motor under high vacuum conditions[J]. Electrical Measurement & Instrumentation, 2020, 57(19): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202019008.htm
    [3] GAN C, WU J H, SUN Q G, et al. A review on machine topologies and control techniques for lowVnoise switched reluctance motors in electric vehicle applications[J]. IEEE Access, 2018, 6: 31430-31443. doi: 10.1109/ACCESS.2018.2837111
    [4] XUE X D, CHENG K W E, BAO Y J, et al. Switched reluctance generators with hybrid magnetic paths for wind power generation[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3863-3866. doi: 10.1109/TMAG.2012.2202094
    [5] SZABO L, RUBA M. Segmental stator switched reluctance machine for safety-critical applications[J]. IEEE Transactions on Industry Applications, 2012, 48(6): 2223-2229. doi: 10.1109/TIA.2012.2226857
    [6] LABAK A, KAR N C. Designing and prototyping a novel five-phase pancake-shaped axial-flux SRM for electric vehicle application through dynamic FEA incorporating flux-tube modeling[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1276-1288. doi: 10.1109/TIA.2013.2252871
    [7] DING W, HU Y F, WU L M. Analysis and development of novel three-phase hybrid magnetic paths switched reluctance motors using modular and segmental structures for EV applications[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2437-2451. doi: 10.1109/TMECH.2014.2383615
    [8] LEE C, KRISHNAN R. New designs of a two-phase E-core switched reluctance machine by optimizing the magnetic structure for a specific application: concept, design, and analysis[J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1804-1814. doi: 10.1109/TIA.2009.2027570
    [9] LEE C, KRISHNAN R, LOBO N S. Novel two-phase switched reluctance machine using common-pole E-core structure: concept, analysis, and experimental verification[J]. IEEE Transactions on Industry Applications, 2009, 45(2): 703-711. doi: 10.1109/TIA.2009.2013592
    [10] HASEGAWA Y, NAKAMURA K, ICHINOKURA O. A novel switched reluctance motor with the auxiliary windings and permanent magnets[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3855-3858. doi: 10.1109/TMAG.2012.2197734
    [11] ANDRADA P, BLANQUÉ B, MARTÍNEZ E, et al. A novel type of hybrid reluctance motor drive[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4337-4345. doi: 10.1109/TIE.2013.2279384
    [12] DING W, FU H G, HU Y F. Characteristics assessment and comparative study of a segmented-stator permanent-magnet hybrid-excitation SRM drive with high-torque capability[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 482-500. doi: 10.1109/TPEL.2017.2665118
    [13] FARAHANI E F, KONDELAJI M A J, MIRSALIM M. A new exterior-rotor multiple teeth switched reluctance motor with embedded permanent magnets for torque enhancement[J]. IEEE Transactions on Magnetics, 2020, 56(2): 1-5.
    [14] 黄朝志, 宋秀西, 郭桂秀, 等. 一种新型混合励磁分段转子开关磁阻电机[J]. 科学技术与工程, 2020, 20(5): 1900-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202005029.htm

    HUANG C Z, SONG X X, GUO G X, et al. A novel type of hybrid excitation switched reluctance motor with segmental rotors[J]. Science Technology and Engineering, 2020, 20(5): 1900-1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202005029.htm
    [15] 卿龙, 王惠民, 葛兴来. 一种高效率开关磁阻电机转矩脉动抑制方法[J]. 电工技术学报, 2020, 35(9): 1912-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202009007.htm

    QING L, WANG H M, GE X L. A high efficiency torque ripple suppression method for switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1912-1920. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202009007.htm
    [16] TAKIGUCHI M, SUGIMOTO H, KURIHARA N, et al. Acoustic noise and vibration reduction of SRM by elimination of third harmonic component in sum of radial forces[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 883-891. doi: 10.1109/TEC.2015.2401398
    [17] YANG H Y, LIM Y C, KIM H C. Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4292-4300. doi: 10.1109/TIE.2012.2217715
    [18] ISFAHANI A H, FAHIMI B. Comparison of mechanical vibration between a double-stator switched reluctance machine and a conventional switched reluctance machine[J]. IEEE Transactions on Magnetics, 2014, 50(2): 293-296. doi: 10.1109/TMAG.2013.2286569
    [19] BALAJI M, RAMKUMAR S, KAMARAJ V. Sensitivity analysis of geometrical parameters of a switched reluctance motor with modified pole shapes[J]. Journal of Electrical Engineering and Technology, 2014, 9(1): 136-142. doi: 10.5370/JEET.2014.9.1.136
    [20] 张鑫, 王秀和, 杨玉波. 基于改进磁场分割法的开关磁阻电机径向力波抑制能力解析计算[J]. 电工技术学报, 2015, 30(22): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201522002.htm

    ZHANG X, WANG X H, YANG Y B. The computation of vibration reduction capacity for switched reluctance motor based on improved magnetic field partition method[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 9-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201522002.htm
    [21] 张鑫, 王秀和, 杨玉波, 等. 基于转子齿两侧开槽的开关磁阻电机振动抑制方法研究[J]. 中国电机工程学报, 2015, 35(6): 1508-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201506027.htm

    ZHANG X, WANG X H, YANG Y B, et al. Vibration reduction of a switched reluctance motor using new rotor tooth with slot on each side[J]. Proceedings of the CSEE, 2015, 35(6): 1508-1515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201506027.htm
    [22] 黄朝志, 石王丰, 郭桂秀, 等. 基于转矩脉动和径向力的定子极形优化[J]. 电机与控制学报, 2020, 24(6): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202006013.htm

    HUANG C Z, SHI W F, GUO G X, et al. Optimization of stator pole shape based on torque ripple and radial force[J]. Electric Machines and Control, 2020, 24(6): 98-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202006013.htm
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  161
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回