留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机填料对ABS材料FDM试件的力学性能影响

张广为 陈曼曼 朱丽娜 徐金亭

张广为, 陈曼曼, 朱丽娜, 徐金亭. 无机填料对ABS材料FDM试件的力学性能影响[J]. 机械科学与技术, 2023, 42(4): 580-584. doi: 10.13433/j.cnki.1003-8728.20220060
引用本文: 张广为, 陈曼曼, 朱丽娜, 徐金亭. 无机填料对ABS材料FDM试件的力学性能影响[J]. 机械科学与技术, 2023, 42(4): 580-584. doi: 10.13433/j.cnki.1003-8728.20220060
ZHANG Guangwei, CHEN Manman, ZHU Lina, XU Jinting. Effect of Inorganic Fillers on Mechanical Properties of FDM 3D Printed ABS Specimens[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 580-584. doi: 10.13433/j.cnki.1003-8728.20220060
Citation: ZHANG Guangwei, CHEN Manman, ZHU Lina, XU Jinting. Effect of Inorganic Fillers on Mechanical Properties of FDM 3D Printed ABS Specimens[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 580-584. doi: 10.13433/j.cnki.1003-8728.20220060

无机填料对ABS材料FDM试件的力学性能影响

doi: 10.13433/j.cnki.1003-8728.20220060
基金项目: 

国家重点研发计划项目 2020YFA0713702

国家自然科学基金项目 51975097

山东省重大科技创新工程项目 2019JZZY010128

详细信息
    作者简介:

    张广为(1998-), 硕士研究生, 研究方向为增材制造工艺与3D打印路径规划, dutzgw@163.com

    通讯作者:

    徐金亭, 教授, 博士生导师, xujt@dlut.edu.cn

  • 中图分类号: TB332;TP391.73

Effect of Inorganic Fillers on Mechanical Properties of FDM 3D Printed ABS Specimens

  • 摘要: 以丙烯腈-丁二烯-苯乙烯(ABS)为基体,以HGB、GF、ZnO、TiO和Al2O3为改性填料,制备五种改性ABS复合材料,进而利用熔融沉积成型(FDM)3D技术打印复合材料试件,测定试件的力学性能,并绘制应力应变曲线,然后进行不同改性材料拉伸强度、杨氏模量及断裂伸长率等力学性能分析。结果表明,与纯ABS材料相比,HGB的填充会导致ABS试件杨氏模量增加,但拉伸强度和断裂伸长率降低;GF的填充能够同时增加ABS试件的拉伸强度、杨氏模量及断裂伸长率;ZnO、TiO及Al2O3等纳米颗粒的填充均使ABS试件的拉伸强度、杨氏模量和断裂伸长率增强,其中TiO对ABS拉伸强度的增强效果最好,拉伸强度增加高达35.33%。
  • 图  1  FDM桌面打印机原理图

    图  2  拉伸试件尺寸示意图

    图  3  ABS及复合材料拉伸断裂图

    图  4  ABS及复合材料拉伸强度示意图

    图  5  ABS及复合材料杨氏模量示意图

    图  6  ABS及复合材料断裂伸长率示意图

    图  7  ABS及复合材料应力-应变曲线图

    表  1  无机填料的含量及种类

    编号 无机填料 填料含量/% ABS含量/%
    1 HGB 8 92
    2 ZnO 5 95
    3 Al2O3 5 95
    4 TiO 5 95
    5 GF 5 95
    下载: 导出CSV

    表  2  ABS及复合材料拉伸试验结果

    材料 拉伸强度/MPa 拉伸模量/MPa 断裂伸长率/%
    ABS 24.03 1 015.33 4.36
    HGB/ABS 21.48 1 020.17 4.02
    ZnO/ABS 31.43 1 160.37 5.14
    Al2O3/ABS 25.84 1 126.37 4.61
    TiO/ABS 32.52 1 110.77 5.46
    GF/ABS 26.42 1 068.43 4.97
    下载: 导出CSV
  • [1] MARTÍNEZ J, DIÉGUEZ J L, ARES E, et al. Comparative between FEM models for FDM parts and their approach to a real mechanical behaviour[J]. Procedia Engineering, 2013, 63: 878-884. doi: 10.1016/j.proeng.2013.08.230
    [2] VEGA V, CLEMENTS J, LAM T, et al. The effect of layer orientation on the mechanical properties and microstructure of a polymer[J]. Journal of Materials Engineering and Performance, 2011, 20(6): 978-988. doi: 10.1007/s11665-010-9740-z
    [3] NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B: Engineering, 2015, 80: 369-378. doi: 10.1016/j.compositesb.2015.06.013
    [4] TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology, 2014, 105: 144-150. doi: 10.1016/j.compscitech.2014.10.009
    [5] SHOFNER M L, LOZANO K, RODRÍGUEZ-MACÍAS F J, et al. Nanofiber-reinforced polymers prepared by fused deposition modeling[J]. Journal of Applied Polymer Science, 2003, 89(11): 3081-3090. doi: 10.1002/app.12496
    [6] WENG Z X, WANG J L, SENTHIL T, et al. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing[J]. Materials & Design, 2016, 102: 276-283.
    [7] LIU Z B, LEI Q, XING S Q. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM[J]. Journal of Materials Research and Technology, 2019, 8(5): 3741-3751. doi: 10.1016/j.jmrt.2019.06.034
    [8] ÇANTI E, AYDIN M. Effects of micro particle reinforcement on mechanical properties of 3D printed parts[J]. Rapid Prototyping Journal, 2018, 24(1): 171-176.
    [9] WEI Q H, CAI X X, GUO Y H, et al. Atomic-scale and experimental investigation on the micro-structures and mechanical properties of PLA blending with CMC for additive manufacturing[J]. Materials & Design, 2019, 183: 108158.
    [10] KUMAR M, RAMAKRISHNAN R, OMARBEKOVA A. 3D printed polycarbonate reinforced acrylonitrile-butadiene-styrene composites: composition effects on mechanical properties, micro-structure and void formation study[J]. Journal of Mechanical Science and Technology, 2019, 33(11): 5219-5226. doi: 10.1007/s12206-019-1011-9
    [11] TAO Y B, WANG H L, LI Z L, et al. Development and application of wood flour-filled polylactic acid composite filament for 3D printing[J]. Materials, 2017, 10(4): 339. doi: 10.3390/ma10040339
    [12] 仪登豪, 冯英豪, 张锦芳, 等. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.

    YI D H, FENG Y H, ZHANG J F, et al. Research progress of 3D-printed graphene-reinforced composites[J]. Materials Reports, 2020, 34(9): 9086-9094. (in Chinese)
    [13] 薛周航, 李庆业, 张伟, 等. 熔融沉积成型用聚乙烯/膨胀石墨导热复合材料的制备及性能[J]. 高分子材料科学与工程, 2020, 36(9): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC202009013.htm

    XUE Z H, LI Q Y, ZHANG W, et al. Preparation and properties of thermal conductive polyethylene/expanded graphite composites for fused deposition modeling[J]. Polymer Materials Science and Engineering, 2020, 36(9): 88-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC202009013.htm
    [14] WANG Q Q, JI C C, SUN J S, et al. Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing[J]. Molecules, 2020, 25(10): 2319. doi: 10.3390/molecules25102319
    [15] YANG L P, LI S J, ZHOU X, et al. Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process[J]. Synthetic Metals, 2019, 253: 122-130. doi: 10.1016/j.synthmet.2019.05.008
    [16] 李军伟, 刘志锋, 吴湘锋. HGB表面改性及粒径分布对ABS/HGB性能影响[J]. 现代塑料加工应用, 2010, 22(6): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSL201006009.htm

    LI J W, LIU Z F, WU X F. Effects of superficial treatment and particle size distribution of HGB on properties of ABS/HGB composites[J]. Modern Plastics Processing and Applications, 2010, 22(6): 17-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSL201006009.htm
    [17] TORRADO PEREZ A R, ROBERSON D A, WICKER R B. Fracture surface analysis of 3D-Printed tensile specimens of novel ABS-Based materials[J]. Journal of Failure Analysis and Prevention, 2014, 14(3): 343-353.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  44
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回