留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液压启闭机-弧形闸门耦合动力学仿真与抑振研究

姚怀智 刘放 余刚毅 郑雪楷 杨言 魏文清

姚怀智,刘放,余刚毅, 等. 液压启闭机-弧形闸门耦合动力学仿真与抑振研究[J]. 机械科学与技术,2023,42(8):1178-1183 doi: 10.13433/j.cnki.1003-8728.20220054
引用本文: 姚怀智,刘放,余刚毅, 等. 液压启闭机-弧形闸门耦合动力学仿真与抑振研究[J]. 机械科学与技术,2023,42(8):1178-1183 doi: 10.13433/j.cnki.1003-8728.20220054
YAO Huaizhi, LIU Fang, YU Gangyi, ZHENG Xuekai, YANG Yan, WEI Wenqing. Study on Dynamic Simulation and Vibration Suppression of Hydraulic Hoist and Arc Gate Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1178-1183. doi: 10.13433/j.cnki.1003-8728.20220054
Citation: YAO Huaizhi, LIU Fang, YU Gangyi, ZHENG Xuekai, YANG Yan, WEI Wenqing. Study on Dynamic Simulation and Vibration Suppression of Hydraulic Hoist and Arc Gate Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1178-1183. doi: 10.13433/j.cnki.1003-8728.20220054

液压启闭机-弧形闸门耦合动力学仿真与抑振研究

doi: 10.13433/j.cnki.1003-8728.20220054
详细信息
    作者简介:

    姚怀智(1997−),硕士研究生,研究方向为机械结构及动力学,804501429@qq.com

    通讯作者:

    刘放,副教授,博士,研究方向为机械动力学及优化设计,liufang@home.swjtu.edu.cn

  • 中图分类号: TV664

Study on Dynamic Simulation and Vibration Suppression of Hydraulic Hoist and Arc Gate Coupling

  • 摘要: 针对液压启闭机-弧形闸门,为研究其振动传递并提出有效抑振措施。本文通过建立其三维实体模型,并建立其动力学方程,理论分析液压油的刚度阻尼特性,在Simpack中建立液压启闭机-弧形闸门耦合动力学仿真模型,并以液压系统为振动源,通过设置基座隔断阻尼器和闸门隔断阻尼器并进行参数优化来抑制振动传递,结果表明:基座隔断阻尼器和闸门隔断阻尼器能有效抑制振动的传递,并得到两阻尼器刚度与阻尼的优势区间,基座隔断阻尼器刚度为1 × 104 ~ 1 × 105 N/mm,阻尼为100 ~ 2 000 Ns/mm;闸门隔断阻尼器刚度为1 × 104 ~ 5 × 105 N/mm,阻尼为100 ~ 2 000 Ns/mm。
  • 图  1  液压启闭机-弧形闸门三维实体模型

    Figure  1.  Three-dimensional solid model of the hydraulic hoist radial gate

    图  2  液压启闭机-弧形闸门的动力学仿真模型

    Figure  2.  Dynamic simulation model of the hydraulic hoist radial gate

    图  3  现场液压系统压力测定图

    Figure  3.  Pressure measurement diagram of the on-site hydraulic system

    图  4  关闭闸门有杆腔油压时域变化图

    Figure  4.  Time-domain variation of oil pressure in the rod chamber during gate closure

    图  5  液压启闭机固定基座竖直方向位移响应

    Figure  5.  The vertical displacement response of the hydraulic hoist fixed base

    图  6  弧形闸门质心角位移响应

    Figure  6.  The angular displacement response of the radial gate centroid

    图  7  固定基座竖直方向动态响应幅值随刚度参数变化图

    Figure  7.  Variation in dynamic response amplitude in the vertical direction of the fixed base with the stiffness parameter

    图  8  弧形闸门质心动力响应幅值随刚度参数变化

    Figure  8.  Variation in dynamic response amplitude of the radial gate centroid with the stiffness parameter

    图  9  固定基座竖直方向动态响应幅值随阻尼参数变化图

    Figure  9.  Variation in dynamic response amplitude in the vertical direction of the fixed base with the damping parameter

    图  10  弧形闸门质心动力响应幅值随阻尼参数变化

    Figure  10.  Variation in dynamic response amplitude of the radial gate centroid with the damping parameter

    图  11  无阻尼与临界状态固定基座竖直方向位移响应

    Figure  11.  The vertical displacement response of the fixed base in the undamped and critical states

    图  12  无阻尼与临界状态弧形闸门质心角位移响应

    Figure  12.  The angular displacement response of the radial gate centroid in undamped and critical states

    表  1  工况1 ~ 7各阻尼器参数及各部件稳定时间

    Table  1.   Damper parameters and stability time of each component for operating conditions 1-7

    工况基座隔断阻尼器闸门隔断阻尼器基座稳态
    时间/s
    闸门稳态
    时间/s
    刚度/
    104(N·mm–1)
    阻尼/
    (Ns·mm–1)
    刚度/
    105(N·mm–1)
    阻尼/
    (Ns·mm–1)
    1 无阻尼 5 5
    2 液压缸阻尼 19.0 0.1 200 200
    3 液压缸阻尼 + 基座
    隔断阻尼器 + 闸
    门隔断阻尼器
    1.0 10 0.1 10 160 190
    4 1.0 10 1.0 10 100 160
    5 5.0 10 2.0 10 150 190
    6 10.0 10 5.0 10 190 200
    7 50.0 10 10.0 10 500 500
    下载: 导出CSV

    表  2  工况8 ~ 13各阻尼器参数及各部件稳定时间

    Table  2.   Damper parameters and stability time of each component for operating conditions 8-13


    基座隔断阻尼器闸门隔断阻尼器基座稳态时间/s闸门稳态时间/s
    刚度/104 (N·mm–1)阻尼/(Ns·mm–1)刚度/105(N·mm–1)阻尼/(Ns·mm–1)
    8 液压缸阻尼 +
    基座隔断阻尼器 +
    闸门隔断阻尼器
    1.0 0.1 1.0 0.1 300 430
    9 1.0 1 1.0 1 450 500
    10 1.0 10 1.0 10 100 160
    11 1.0 100 1.0 100 20 20
    12 1.0 1000 1.0 1000 2 2
    13 1.0 2000 1.0 2000 1 1
    下载: 导出CSV
  • [1] 马希青, 郭巍巍, 郭亮, 等. 基于ADAMS的门式启闭机动力学仿真分析[J]. 机电产品开发与创新, 2012, 25(6): 88-90.

    MA X Q, GUO W W, GUO L, et al. The dynamics simulation analysis of gantry hoist based on ADAMS[J]. Development & Innovation of Machinery & Electrical Products, 2012, 25(6): 88-90. (in Chinese)
    [2] 苗明, 李益琴, 祁燕燕, 等. 基于ADAMS的门式启闭机虚拟样机建模及起升工况的动力学仿真[J]. 起重运输机械, 2009(5): 22-25.

    MIAO M, LI Y Q, QI Y Y, et al. Modeling of virtual prototype of gantry crane based on ADAMS and dynamic simulation of hoisting condition[J]. Hoisting and Conveying Machinery, 2009(5): 22-25. (in Chinese)
    [3] 李树海, 杨杰, 郑志国, 等. 基于虚拟样机的人字闸门启闭机动力学仿真分析[J]. 水运工程, 2009(6): 26-29.

    LI S H, YANG J, ZHANG Z G, et al. Dynamic simulation research on miter gate operating machine based on virtual prototype technology[J]. Port & Waterway Engineering, 2009(6): 26-29. (in Chinese)
    [4] 胡友安, 徐婷, 顾晓峰. 门式启闭机门架结构静、动力学分析[J]. 华电技术, 2012, 34(2): 16-21.

    HU Y A, XU T, GU X F. Static and dynamic analysis on frame structure of gantry gate hoist[J]. Huadian Technology, 2012, 34(2): 16-21. (in Chinese)
    [5] LI J, LI H L, CUI H X, et al. Nonlinear dynamics characteristics and influence factors analysis of servo hydraulic cylinder[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(20): 3629-3638. doi: 10.1177/0954406217740166
    [6] GUAN E G, MIAO H H, LI P B, et al. Dynamic model analysis of hydraulic support[J/OL](2019-01-23)[2021-02-10]. https://journals.sagepub.com/doi/epub/10.1177/1687814018820143
    [7] 宁辰校, 张戌社. 液压启闭机液压系统振动与噪声研究[J]. 液压与气动, 2013(2): 64-66.

    NING C X, ZHANG X S. Study on vibration and noise for the hydraulic system of hydraulic hoist[J]. Chinese Hydraulics & Pneumatics, 2013(2): 64-66. (in Chinese)
    [8] 刘士明, 孟丽霞. 工程起重机伸缩臂系统稳定性与复合运动动力学研究[M]. 徐州: 中国矿业大学出版社, 2020

    LIU S M, MENG L X. Study on stability and compound motion dynamics of telescopic boom system of construction crane[M]. Xuzhou: China University of Mining and Technology Press, 2020. (in Chinese)
    [9] 李鹏, 朱建公, 张德虎, 等. 新型内循环数字液压缸系统设计及仿真研究[J]. 机械科学与技术, 2014, 33(1): 48-52.

    LI P, ZHU J G, ZHANG D H, et al. Study on system design and simulation of a new digital hydraulic actuator with inner circulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(1): 48-52. (in Chinese)
    [10] 朱勇, 姜万录, 刘思远, 等. 非线性液压弹簧力对电液伺服系统非线性动力学行为影响的研究[J]. 中国机械工程, 2015(8): 1085-1091.

    ZHU Y, JIANG W L, LIU S Y, et al. Research on influences of nonlinear hydraulic spring force on nonlinear dynamic behaviors of electro-hydraulic servo system[J]. China Mechanical Engineering, 2015(8): 1085-1091. (in Chinese)
    [11] 周光钱, 佘霞, 李欣玲, 等. 平面轨迹机构运动误差的统计矩分析[J]. 机械科学与技术, 2016, 35(12): 1824-1828.

    ZHOU G Q, SHE X, LI X L, et al. Analyzing statistical moments of motion errors for planar path linkage[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1824-1828. (in Chinese)
    [12] 杨国庆, 王飞, 洪军, 等. 螺栓被连接件刚度理论的计算方法[J]. 西安交通大学学报, 2012, 46(7): 50-56.

    YANG G Q, WANG F, HONG J, et al. Theoretical analysis for bolted member stiffness[J]. Journal of Xi′an Jiaotong University, 2012, 46(7): 50-56. (in Chinese)
    [13] 戢广禹. 一种新型环形弹簧-SMA拉索自复位阻尼器的减震性能研究[D]. 北京: 北京建筑大学, 2019

    JI G Y. Seismic control behavior of a new ring spring-SMA cables re-centering damper[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. (in Chinese)
    [14] 薛瑞娟, 郭敬彬, 王君, 等. 环形弹簧静刚度与冲击性能有限元分析[J]. 舰船科学技术, 2018, 40(10): 67-71.

    XUE R J, GUO J B, WANG J, et al. Finite element analysis of static stiffness and shock performance of ring spring[J]. Ship Science and Technology, 2018, 40(10): 67-71. (in Chinese)
    [15] 徐蒙, 庄鹏, 韩淼. 环形弹簧阻尼器的滞回性能试验研究[J]. 动力学与控制学报, 2020, 18(5): 79-85.

    XU M, ZHUANG P, HAN M. Experimental study on hysteretic performance of ring spring damper[J]. Journal of Dynamics and Control, 2020, 18(5): 79-85. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  53
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回