留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隔膜抽气泵用三明治约束阻尼垫片减振特性分析

陈卫 王玮 刘志恩 郝同辉 柴方

陈卫,王玮,刘志恩, 等. 隔膜抽气泵用三明治约束阻尼垫片减振特性分析[J]. 机械科学与技术,2023,42(8):1171-1177 doi: 10.13433/j.cnki.1003-8728.20220047
引用本文: 陈卫,王玮,刘志恩, 等. 隔膜抽气泵用三明治约束阻尼垫片减振特性分析[J]. 机械科学与技术,2023,42(8):1171-1177 doi: 10.13433/j.cnki.1003-8728.20220047
CHEN Wei, WANG Wei, LIU Zhien, HAO Tonghui, CHAI Fang. Vibration Reduction Characteristics of Sandwich Constrained Damping Gasket for Diaphragm Air Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1171-1177. doi: 10.13433/j.cnki.1003-8728.20220047
Citation: CHEN Wei, WANG Wei, LIU Zhien, HAO Tonghui, CHAI Fang. Vibration Reduction Characteristics of Sandwich Constrained Damping Gasket for Diaphragm Air Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1171-1177. doi: 10.13433/j.cnki.1003-8728.20220047

隔膜抽气泵用三明治约束阻尼垫片减振特性分析

doi: 10.13433/j.cnki.1003-8728.20220047
基金项目: 国家自然科学基金面上项目(52175111)
详细信息
    作者简介:

    陈卫(1996−),硕士研究生,研究方向为隔膜抽气泵隔振研究,CWei@whut.edu.cn

    通讯作者:

    王玮,副教授,硕士生导师,wei.wang@whut.edu.cn

  • 中图分类号: TB535.1

Vibration Reduction Characteristics of Sandwich Constrained Damping Gasket for Diaphragm Air Pump

  • 摘要: 隔膜抽气泵在运转过程中会产生振动,使用阻尼垫片可以有效减小其振动。设计并制备了一种三明治约束阻尼垫片,其约束层使用铝合金,阻尼层采用黏弹性材料。通过时域和频域响应分析对比了三明治约束阻尼垫片安装前后隔膜泵的振动响应,发现该垫片能够以4 mm(或传统的1/10)厚度实现良好的减振效果,提高了系统的稳定性。与此同时,本文还从材料和结构的角度分析了三明治约束阻尼垫片的减振机理。
  • 图  1  传统的三明治约束阻尼结构

    Figure  1.  Traditional sandwich constrained damping structure

    图  2  三明治约束阻尼垫片

    Figure  2.  Sandwich restraint damping gasket

    图  3  强迫振动试验

    Figure  3.  Forced vibration test

    图  4  沥青板阻尼系数曲线

    Figure  4.  Damping coefficient curve of asphalt plate

    图  5  泵身加速度时域曲线

    Figure  5.  Time domain curve of pump body acceleration

    图  6  机脚加速度时域曲线

    Figure  6.  Time domain curve of foot acceleration

    图  7  泵身加速度频域曲线

    Figure  7.  Pump body acceleration frequency domain curve

    图  8  机脚加速度频域曲线

    Figure  8.  Frequency domain curve of foot acceleration

    表  1  25 Hz及其倍频下沥青板的阻尼系数

    Table  1.   Damping coefficient of asphalt plate at 25 Hz andits frequency doubling

    频率/Hz 样品1 样品2 样品3 平均值
    25 0.652 0.654 0.672 0.659
    50 0.661 0.646 0.676 0.661
    75 0.258 0.224 0.184 0.222
    100 0.622 0.614 0.655 0.630
    下载: 导出CSV

    表  2  泵身加速度振幅均值表

    Table  2.   Pump body acceleration amplitude mean table m/s2

    方向无垫片
    振幅
    三明治垫片橡胶悬置垫片
    振幅减振/%振幅减振/%
    x 4.532 1.734 61.74 5.643 −24.51
    y 1.522 0.845 44.48 0.899 40.93
    z 3.640 1.135 68.82 1.409 61.29
    下载: 导出CSV

    表  3  机脚加速度振幅均值表

    Table  3.   Foot acceleration amplitude mean table m/s2

    方向无垫片
    振幅
    三明治垫片橡胶悬置垫片
    振幅减振/%振幅减振/%
    x2.3850.56876.180.48679.62
    y2.4591.62633.881.17252.34
    z6.7161.26081.240.90686.51
    下载: 导出CSV
  • [1] 唐耀阳, 刘志恩, 李兵, 等. 隔膜抽气泵排气噪声控制研究[J]. 武汉理工大学学报, 2011, 33(9): 135-138. doi: 10.3963/j.issn.1671-4431.2011.09.028

    TANG Y Y, LIU Z E, LI B, et al. Study on exhaust noise control of the diaphragm air pump[J]. Journal of Wuhan University of Technology, 2011, 33(9): 135-138. (in Chinese) doi: 10.3963/j.issn.1671-4431.2011.09.028
    [2] LIANG L Q, HUANG W B, LYU P, et al. Impacts of PU foam stand-off layer on the vibration damping performance of stand-off free layer damping cantilever beams[J]. Shock and Vibration, 2020, 2020: 8871562.
    [3] 张国旺, 陆敏恂. 乘用车电动真空泵的整车噪音优化[J]. 佳木斯大学学报(自然科学版), 2017, 35(1): 50-53.

    ZHANG G W, LU M X. Optimization of vehicle noise in electric vacuum pump of passenger car[J]. Journal of Jiamusi University (Natural Science Edition), 2017, 35(1): 50-53. (in Chinese)
    [4] TREVISO A, VAN GENECHTEN B, MUNDO D, et al. Damping in composite materials: Properties and models[J]. Composites Part B:Engineering, 2015, 78: 144-152. doi: 10.1016/j.compositesb.2015.03.081
    [5] 熊志远, 王士军, 张龙, 等. 阻尼结构减振性能的测试及分析[J]. 机械设计与制造, 2020(8): 64-67. doi: 10.3969/j.issn.1001-3997.2020.08.015

    XIONG Z Y, WANG S J, ZHANG L, et al. Test and analysis of damping properties of damping structures[J]. Machinery Design & Manufacture, 2020(8): 64-67. (in Chinese) doi: 10.3969/j.issn.1001-3997.2020.08.015
    [6] 赵晓春, 李祥宁, 李凯, 等. 三明治夹层板振动特性与优化[J]. 中国舰船研究, 2013, 8(4): 46-51. doi: 10.3969/j.issn.1673-3185.2013.04.008

    ZHAO X C, LI X N, LI K, et al. Analysis and optimization of the vibration characteristics of sandwich plates[J]. Chinese Journal of Ship Research, 2013, 8(4): 46-51. (in Chinese) doi: 10.3969/j.issn.1673-3185.2013.04.008
    [7] 高晨光, 陈小娟. 陀螺组件结构动态特性分析和减振设计[J]. 空间控制技术与应用, 2016, 42(6): 42-46.

    GAO C G, CHEN X J. Dynamic characteristic analysis and anti-vibration design for gyro component[J]. Aerospace Control and Application, 2016, 42(6): 42-46. (in Chinese)
    [8] SARVESTANI H Y, AKBARZADEH A H, NIKNAM H, et al. 3D printed architected polymeric sandwich panels: Energy absorption and structural performance[J]. Composite Structures, 2018, 200: 886-909. doi: 10.1016/j.compstruct.2018.04.002
    [9] 王贝贝, 刘沿东, 薛鹏, 等. 超细晶6061铝合金的搅拌摩擦制备和性能[J]. 材料研究学报, 2021, 35(5): 321-329.

    WANG B B, LIU Y D, XUE P, et al. Prepration and mechanical properties of ultrafine-grained 6061 Al-alloy by friction stir process[J]. Chinese Journal of Materials Research, 2021, 35(5): 321-329. (in Chinese)
    [10] 贺红林, 周楠兰, 刘文光, 等. 粘弹性阻尼板结构减振动力学特性分析与优化[J]. 计算机仿真, 2015, 32(7): 203-207. doi: 10.3969/j.issn.1006-9348.2015.07.045

    HE H L, ZHOU N L, LIU W G, et al. Analysis of vibration suppression characteristics of plank structure layered by visco-elastic damping materials[J]. Computer Simulation, 2015, 32(7): 203-207. (in Chinese) doi: 10.3969/j.issn.1006-9348.2015.07.045
    [11] XU M M, HUANG G Y, FENG S S, et al. Perforation resistance of aluminum/polyethylene sandwich structure[J]. Materials & Design, 2016, 100: 92-101.
    [12] SHARMA R S, RAGHUPATHY V P. Influence of core density, core thickness, and rigid inserts on dynamic characteristics of sandwich panels with polyurethane foam as core[J]. Journal of Reinforced Plastics and Composites, 2010, 29(21): 3226-3236. doi: 10.1177/0731684410370904
    [13] 莫丽蓉. 某特种车辆振动特性分析及减振技术研究[D]. 武汉: 武汉理工大学, 2017

    MO L R. Research on vibration characteristics and damping technology of a special vehicle[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
    [14] 常冠军. 粘弹性阻尼材料[M]. 北京: 国防工业出版社, 2012

    CHANG G J. Viscoelastic damping materials[M]. Beijing: National Defense Industry Press, 2012. (in Chinese)
    [15] 王鑫. 粘弹性约束阻尼结构拓扑优化及其在车身中的应用[D]. 长沙: 湖南大学, 2018

    WANG X. Topological optimization of viscoelastic constrained damping structure and the application in the car body[D]. Changsha: Hunan University, 2018. (in Chinese)
    [16] 姜海娟. 车身阻尼减振材料轻量化设计与性能分析[D]. 长春: 吉林大学, 2018

    JIANG H J. Lightweight design and performance analysis of damping material for auto-body[D]. Changchun: Jilin University, 2018. (in Chinese)
    [17] 丁展峰, 李海超. 钢板—沥青—钢板夹层阻尼结构防护下高墩的抗爆防护研究[J]. 国防交通工程与技术, 2018, 16(6): 32-36. doi: 10.13219/j.gjgyat.2018.06.008

    DING Z F, LI H C. A study of the anti-explosion performance of tall hollow piers protected with the steel-sheet-asphalt-steel-sheet sandwich damping structure[J]. Traffic Engineering and Technology for National Defence, 2018, 16(6): 32-36. (in Chinese) doi: 10.13219/j.gjgyat.2018.06.008
    [18] 郝亚苹, 孟赟, 郑贵涛, 等. 基质沥青对自粘聚合物改性沥青防水卷材剥离强度的影响[J]. 中国建筑防水, 2021(7): 1-3. doi: 10.15901/j.cnki.1007-497x.2021.07.001

    HAO Y P, MENG Y, ZHENG G T, et al. Influence of base bitumen on peeling strength of self-adhesive polymer modified bitumen waterproofing membrane[J]. China Building Waterproofing, 2021(7): 1-3. (in Chinese) doi: 10.15901/j.cnki.1007-497x.2021.07.001
    [19] 谭祥军. 从这里学NVH—旋转机械NVH分析与TPA分析[M]. 北京: 机械工业出版社, 2012

    TAN X J. Learn NVH from here-NVH analysis and TPA analysis of rotating machinery[M]. Beijing: China Machine Press, 2012. (in Chinese)
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  42
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回