留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变工况下管道堵塞识别的声纹模型研究

杨佳睿 冯早 朱雪峰

杨佳睿,冯早,朱雪峰. 变工况下管道堵塞识别的声纹模型研究[J]. 机械科学与技术,2023,42(6):914-922 doi: 10.13433/j.cnki.1003-8728.20220037
引用本文: 杨佳睿,冯早,朱雪峰. 变工况下管道堵塞识别的声纹模型研究[J]. 机械科学与技术,2023,42(6):914-922 doi: 10.13433/j.cnki.1003-8728.20220037
YANG Jiarui, FENG Zao, ZHU Xuefeng. Research on Voiceprint Model of Pipeline Blockage Recognition Under Variable Working Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 914-922. doi: 10.13433/j.cnki.1003-8728.20220037
Citation: YANG Jiarui, FENG Zao, ZHU Xuefeng. Research on Voiceprint Model of Pipeline Blockage Recognition Under Variable Working Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 914-922. doi: 10.13433/j.cnki.1003-8728.20220037

变工况下管道堵塞识别的声纹模型研究

doi: 10.13433/j.cnki.1003-8728.20220037
基金项目: 国家自然科学基金项目(61563024)
详细信息
    作者简介:

    杨佳睿(1997−),硕士研究生,研究方向为信号处理、模式识别,1184191884@qq.com

    通讯作者:

    冯早,副教授,硕士生导师,6483975@qq.com

  • 中图分类号: TP274.2

Research on Voiceprint Model of Pipeline Blockage Recognition Under Variable Working Conditions

  • 摘要: 针对排水管道堵塞检测实际应用中训练样本所包含的工况类别受限导致新工况识别率低下的问题,提出一种基于精细复合多尺度散布熵(Refined composite multi-scale dispersion entropy,RCMDE)和高斯混合隐马尔可夫模型(Gaussian-mixed-model hidden Markov model,GMM-HMM)的管道堵塞声纹识别模型。首先,采用基于子带谱熵的单参数双门限端点检测算法对单一和复杂工况下降噪后整体声压信号进行端点检测和信号分割,得到对应管道内堵塞物、三通件和管道尾端的个体声压信号。然后,提取精细复合多尺度散布熵作为特征向量。最后,将单一工况下不同类别的声压信号的特征向量用于模型训练,训练好的模型用于复杂工况下的堵塞物、三通件以及管道尾端的识别。结果表明:所提出的声纹识别模型在训练样本工况类别受限的条件下能有效识别变工况下排水管道中的堵塞物,三通件以及管道尾端,综合识别率为93.75%。验证在不同工况下堵塞物对声波的影响具有共性,与三通件、管道尾端具有差异性,具有一定的工程应用价值。
  • 图  1  模型识别流程

    图  2  实验平台

    图  3  堵塞物和三通件实物图

    图  4  声压信号数据采集实验平台简图

    图  5  55 mm堵塞物声压信号降噪和端点检测

    图  6  声压信号的RCMDE均值

    图  7  声压信号的MDE均值

    图  8  声压信号的MSE均值

    图  9  不同类型的声压信号在各GMM-HMM模型下的对数似然概率输出值

    表  1  模型识别正确率对比

    信号类型测试样本数量MSE-GMM-HMM/%MDE-GMM-HMM/%RCMDE-GMM-HMM
    55 mm 堵塞物 20 75 80 90
    40 mm堵塞物 20 80 85 90
    三通件 20 80 80 95
    管道尾端 20 100 100 100
    平均识别率 20 83.75 86.25 93.75
    下载: 导出CSV
  • [1] HAO T, ROGERS C D F, METJE N, et al. Condition assessment of the buried utility service infrastructure[J]. Tunnelling and Underground Space Technology, 2012, 28: 331-344. doi: 10.1016/j.tust.2011.10.011
    [2] DATTA S, SARKAR S. A review on different pipeline fault detection methods[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 97-106. doi: 10.1016/j.jlp.2016.03.010
    [3] 伍林峰, 冯早, 黄国勇, 等. 小波包增强稀疏表征分类的管道堵塞故障识别[J]. 电子测量与仪器学报, 2019, 33(3): 35-43. doi: 10.13382/j.jemi.B1801870

    WU L F, FENG Z, HUANG G Y, et al. Pipeline jam fault identification based on wavelet packet enhanced sparse representation classification[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(3): 35-43. (in Chinese) doi: 10.13382/j.jemi.B1801870
    [4] 李洋, 冯早, 黄国勇, 等. 基于广义Fisher-互信息的管道堵塞故障特征选择方法[J]. 电子测量与仪器学报, 2018, 32(11): 1-8. doi: 10.13382/j.jemi.2018.11.001

    LI Y, FENG Z, HUANG G Y, et al. Feature selection method for pipe blockage based on generalized Fisher-mutual information[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(11): 1-8. (in Chinese) doi: 10.13382/j.jemi.2018.11.001
    [5] 黎煊, 赵建, 高云, 等. 基于连续语音识别技术的猪连续咳嗽声识别[J]. 农业工程学报, 2019, 35(6): 174-180. doi: 10.11975/j.issn.1002-6819.2019.06.021

    LI X, ZHAO J, GAO Y, et al. Pig continuous cough sound recognition based on continuous speech recognition technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 174-180. (in Chinese) doi: 10.11975/j.issn.1002-6819.2019.06.021
    [6] 王丰华, 王邵菁, 陈颂, 等. 基于改进MFCC和VQ的变压器声纹识别模型[J]. 中国电机工程学报, 2017, 37(5): 1535-1542. doi: 10.13334/j.0258-8013.pcsee.152581

    WANG F H, WANG S J, CHEN S, et al. Voiceprint recognition model of power transformers based on improved MFCC and VQ[J]. Proceedings of the CSEE, 2017, 37(5): 1535-1542. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.152581
    [7] 王斐, 房立清, 齐子元. 基于多尺度样本熵和VPMCD的自动机故障诊断[J]. 振动、测试与诊断, 2018, 38(3): 564-569. doi: 10.16450/j.cnki.issn.1004-6801.2018.03.020

    WANG F, FANG L Q, QI Z Y. Automaton fault diagnosis based on multiscale sample entropy and VPMCD[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(3): 564-569. (in Chinese) doi: 10.16450/j.cnki.issn.1004-6801.2018.03.020
    [8] 程珩, 励文艳, 权龙, 等. 基于VMD-MDE和ELM的柱塞泵微弱故障诊断[J]. 振动、测试与诊断, 2020, 40(4): 635-642. doi: 10.16450/j.cnki.issn.1004-6801.2020.04.001

    CHEN Y, LI W Y, QUAN L, et al. Weak fault diagnosis of axial piston pump based on VMD-MDE and ELM[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(4): 635-642. (in Chinese) doi: 10.16450/j.cnki.issn.1004-6801.2020.04.001
    [9] AZAMI H, ROSTAGHI M, ABÁSOLO D, et al. Refined composite multiscale dispersion entropy and its application to biomedical signals[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(12): 2872-2879. doi: 10.1109/TBME.2017.2679136
    [10] 尚永爽, 许爱强, 吴忠德. 基于SOFM神经网络和HMM的动调陀螺仪故障预测方法研究[J]. 机械科学与技术, 2012, 31(10): 1711-1715. doi: 10.13433/j.cnki.1003-8728.2012.10.026

    SHANG Y S, XU A Q, WU Z D. A method for predicting faults of dynamically tuned gyroscope using SOFM neural network and hidden Markov model[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(10): 1711-1715. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2012.10.026
    [11] 肖熙, 徐晨. 基于声学状态似然值得分模型及监督状态模型的语音识别特征融合算法[J]. 清华大学学报(自然科学版), 2019, 59(6): 476-481. doi: 10.16511/j.cnki.qhdxxb.2019.21.011

    XIAO X, XU C. Speech feature fusion algorithm based on acoustic state likelihood and supervised state modelling[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(6): 476-481. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2019.21.011
    [12] 刘华平, 李昕, 郑宇, 等. 一种改进的自适应子带谱熵语音端点检测方法[J]. 系统仿真学报, 2008, 20(5): 1366-1371. doi: 10.16182/j.cnki.joss.2008.05.027

    LIU H P, LI X, ZHENG Y, et al. Speech endpoint detection based on improved adaptive band-partitioning spectral entropy[J]. Journal of System Simulation, 2008, 20(5): 1366-1371. (in Chinese) doi: 10.16182/j.cnki.joss.2008.05.027
    [13] 李晔, 张仁智, 崔慧娟, 等. 低信噪比下基于谱熵的语音端点检测算法[J]. 清华大学学报(自然科学版), 2005, 45(10): 1397-1440. doi: 10.3321/j.issn:1000-0054.2005.10.027

    LI Y, ZHANG R Z, CUI H J, et al. Voice activity detection algorithm with low signal-to-noise ratios based on the spectrum entropy[J]. Journal of Tsinghua University (Science & Technology), 2005, 45(10): 1397-1440. (in Chinese) doi: 10.3321/j.issn:1000-0054.2005.10.027
    [14] WU B F, WANG K C. Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 762-775. doi: 10.1109/TSA.2005.851909
    [15] ROSTAGHI M, AZAMI H. Dispersion Entropy: A measure for time-series analysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 610-614. doi: 10.1109/LSP.2016.2542881
    [16] 王永鑫, 贾珈, 张雨辰, 等. 基于HMM语音合成的语调控制[J]. 清华大学学报(自然科学版), 2013, 53(6): 781-786. doi: 10.16511/j.cnki.qhdxxb.2013.06.010

    WANG Y X, JIA J, ZHANG Y C, et al. Control of intonation in HMM based text-to-speech systems[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(6): 781-786. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2013.06.010
    [17] 刘嘉敏, 彭玲, 刘军委, 等. 遗传算法VMD参数优化与小波阈值轴承振动信号去噪分析[J]. 机械科学与技术, 2017, 36(11): 1695-1700. doi: 10.13433/j.cnki.1003-8728.2017.1110

    LIU J M, PENG L, LIU J W, et al. Denoising analysis of bearing vibration signal based on genetic algorithm and wavelet threshold VMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1695-1700. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.1110
    [18] 李从志, 郑近德, 潘海洋, 等. 基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程, 2019, 30(14): 1713-1719.

    LI C Z, ZHENG J D, PAN H Y, et al. Fault diagnosis method of rolling bearings based on refined composite multiscale dispersion entropy and support vector machine[J]. China Mechanical Engineering, 2019, 30(14): 1713-1719. (in Chinese)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  23
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回