留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿蜜蜂腹部变体机构设计及运动分析

尹丹妮 谷勇霞 张玉玲

尹丹妮,谷勇霞,张玉玲. 仿蜜蜂腹部变体机构设计及运动分析[J]. 机械科学与技术,2023,42(8):1200-1206 doi: 10.13433/j.cnki.1003-8728.20220034
引用本文: 尹丹妮,谷勇霞,张玉玲. 仿蜜蜂腹部变体机构设计及运动分析[J]. 机械科学与技术,2023,42(8):1200-1206 doi: 10.13433/j.cnki.1003-8728.20220034
YIN Danni, GU Yongxia, ZHANG Yuling. Designing Honeybee Abdomen's Morphing Mechanism and Its Kinematic Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1200-1206. doi: 10.13433/j.cnki.1003-8728.20220034
Citation: YIN Danni, GU Yongxia, ZHANG Yuling. Designing Honeybee Abdomen's Morphing Mechanism and Its Kinematic Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1200-1206. doi: 10.13433/j.cnki.1003-8728.20220034

仿蜜蜂腹部变体机构设计及运动分析

doi: 10.13433/j.cnki.1003-8728.20220034
基金项目: 国家自然科学基金项目(51475258, 51805293)与北京市自然科学基金项目(3184050)
详细信息
    作者简介:

    尹丹妮(1997−),硕士研究生,研究方向为仿生机构设计,yindn97@foxmail.com

    通讯作者:

    谷勇霞,副教授,硕士生导师,guyx@th.btbu.edu.cn

  • 中图分类号: TH122

Designing Honeybee Abdomen's Morphing Mechanism and Its Kinematic Analysis

  • 摘要: 受蜜蜂腹部变形机制的启发,设计一种能够实现伸缩和弯曲的仿生变体头锥机构,该机构采用三组RSH/RRR支链并联机构形式。通过旋量理论计算变体机构的自由度,结果表明该机构的运动自由度满足变体头锥的变形要求,可作为变体头锥的变形展开骨架。然后对变体机构的动态性能进行了仿真分析,结果表明变体机构的变形量满足设计要求,受力情况下仍能保持较稳定的运动状态,变体头锥机构动态性能良好。该变体机构可以提高头锥的灵活性和适应性,同时,该机构的自锁特性和并联分布方式增强了头锥变形的稳定性。
  • 图  1  变体机构一组支链简图

    Figure  1.  Variant mechanism a set of branched chain diagrams

    图  2  整体变体头锥机构模型

    Figure  2.  Overall variant head-cone mechanism model

    图  3  变体头锥机构3种状态

    Figure  3.  Variant head-cone mechanism three states

    图  4  螺杆驱动速度

    Figure  4.  Screw drive speed

    图  5  环3位置变化

    Figure  5.  Change in position of ring 3

    图  6  环3加速度变化

    Figure  6.  Change in acceleration in ring 3

    图  7  无驱动力矩情况下环3位置变化

    Figure  7.  Position change of ring 3 without driving torque

    图  8  空载情况下驱动螺杆力矩

    Figure  8.  Driving screw torque under no-load condition

    图  9  负载情况下驱动螺杆力矩

    Figure  9.  Driving screw torque under load condition

    表  1  头锥各节外壳尺寸参数

    Table  1.   Shell dimensions of each section of the head cone

    参数环1环2环3
    最大直径/mm 434 420 334
    长度/mm 200 200 200
    厚度/mm 10 10 10
    下载: 导出CSV
  • [1] ZHANG Y L, ZHAO J L, CHEN W H, et al. Biomimetic skeleton structure of morphing nose cone for aerospace vehicle inspired by variable geometry mechanism of honeybee abdomen[J]. Aerospace Science and Technology, 2019, 92: 405-416. doi: 10.1016/j.ast.2019.06.010
    [2] WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353. doi: 10.2514/1.C031456
    [3] JIANG W L, DONG C Y, WANG Q. A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1640-1649. doi: 10.1016/j.cja.2015.10.005
    [4] DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus, 2017, 7(1): 20160092. doi: 10.1098/rsfs.2016.0092
    [5] KAMMEGNE M J T, BOTEZ R M, GRIGORIE L T, et al. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing[J]. Chinese Journal of Aeronautics, 2017, 30(2): 561-576. doi: 10.1016/j.cja.2017.02.001
    [6] YUE T, ZHANG X Y, WANG L X, et al. Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing[J]. Aerospace Science and Technology, 2017, 70: 328-338. doi: 10.1016/j.ast.2017.08.013
    [7] GAO L, LI C L, JIN H Z, et al. Aerodynamic characteristics of a novel catapult launched morphing tandem-wing unmanned aerial vehicle[J]. Advances in Mechanical Engineering, 2017, 9(2): 168781401769229.
    [8] 彭悟宇, 杨涛, 涂建秋, 等. 高超声速变形飞行器翼面变形模式分析[J]. 国防科技大学学报, 2018, 40(3): 15-21. doi: 10.11887/j.cn.201803003

    PENG W Y, YANG T, TU J Q, et al. Analysis on wing deformation modes of hypersonic morphing aircraft[J]. Journal of National University of Defense Technology, 2018, 40(3): 15-21. (in Chinese) doi: 10.11887/j.cn.201803003
    [9] 彭悟宇, 杨涛, 王常悦, 等. 高超声速伸缩翼变形飞行器轨迹多目标优化[J]. 国防科技大学学报, 2019, 41(1): 41-47. doi: 10.11887/j.cn.201901007

    PENG W Y, YANG T, WANG C Y, et al. Trajectory multi-objective optimization for hypersonic telescopic wing morphing aircraft[J]. Journal of National University of Defense Technology, 2019, 41(1): 41-47. (in Chinese) doi: 10.11887/j.cn.201901007
    [10] JENETT B, CALISCH S, CELLUCCI D, et al. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics, 2017, 4(1): 33-48. doi: 10.1089/soro.2016.0032
    [11] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [12] WU J N, LI J L, YAN S Z. Design of deployable Bistable structures for morphing skin and its structural optimization[J]. Engineering Optimization, 2014, 46(6): 745-762. doi: 10.1080/0305215X.2013.800055
    [13] LI J L, WU J N, YAN S Z. Conceptual design of deployment structure of morphing nose cone[J]. Advances in Mechanical Engineering, 2013, 5: 590957. doi: 10.1155/2013/590957
    [14] 果晓东, 李君兰, 陈炜铧, 等. 基于伞式导杆机构的变体头锥设计与仿真[J]. 光学 精密工程, 2018, 26(2): 336-343. doi: 10.3788/OPE.20182602.0336

    GUO X D, LI J L, CHEN W Y, et al. Design and simulation of morphing nose cone for umbrella guide‐rod mechanism[J]. Optics and Precision Engineering, 2018, 26(2): 336-343. (in Chinese) doi: 10.3788/OPE.20182602.0336
    [15] ZHAO J L, YAN S Z, DENG L R, et al. Design and analysis of biomimetic nose cone for morphing of aerospace vehicle[J]. Journal of Bionic Engineering, 2017, 14(2): 317-326. doi: 10.1016/S1672-6529(16)60400-6
    [16] 梁友鉴, 赵杰亮, 阎绍泽. 基于蜜蜂腹部变体机制的空天飞行器仿生变体头锥设计[J]. 机械工程学报, 2020, 56(5): 47-54. doi: 10.3901/JME.2020.05.047

    LIANG Y J, ZHAO J L, YAN S Z. Bionic design of morphing nose cone for aerospace vehicle based on the deformable mechanism of honeybee abdomen[J]. Journal of Mechanical Engineering, 2020, 56(5): 47-54. (in Chinese) doi: 10.3901/JME.2020.05.047
    [17] ZHAO J L, HUANG H, YAN S Z. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall[J]. Journal of Applied Physics, 2017, 121(9): 094702. doi: 10.1063/1.4977844
    [18] LIANG Y J, ZHAO J L, YAN S Z, et al. Kinematics of stewart platform explains three-dimensional movement of honeybee′s abdominal structure[J]. Journal of Insect Science, 2019, 19(3): 4. doi: 10.1093/jisesa/iez037
    [19] ZHAO J L, WU J N, YAN S Z. Movement analysis of flexion and extension of honeybee abdomen based on an adaptive segmented structure[J]. Journal of Insect Science, 2015, 15(1): 109. doi: 10.1093/jisesa/iev089
    [20] ZHAO J L, YAN S Z, WU J N. Critical structure for telescopic movement of honey bee (insecta: apidae) abdomen: folded intersegmental membrane[J]. Journal of Insect Science, 2016, 16(1): 79. doi: 10.1093/jisesa/iew049
    [21] ZENG D X, HUANG Z. Type synthesis of the rotational decoupled parallel mechanism based on screw theory[J]. Science China Technological Sciences, 2011, 54(4): 998-1004. doi: 10.1007/s11431-010-4239-2
    [22] WEN X, LIU J, LI J, et al. Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles[J]. Journal of Zhejiang University-Science A, 2019, 20(5): 347-357. doi: 10.1631/jzus.A1800620
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  62
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回