留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转式换向阀的动态响应特性及稳定性分析

赵国超 周国强 王慧 李南奇

赵国超,周国强,王慧, 等. 旋转式换向阀的动态响应特性及稳定性分析[J]. 机械科学与技术,2023,42(6):878-882 doi: 10.13433/j.cnki.1003-8728.20220026
引用本文: 赵国超,周国强,王慧, 等. 旋转式换向阀的动态响应特性及稳定性分析[J]. 机械科学与技术,2023,42(6):878-882 doi: 10.13433/j.cnki.1003-8728.20220026
ZHAO Guochao, ZHOU Guoqiang, WANG Hui, LI Nanqi. Dynamic Response Characteristics and Stability Analysis of Rotary Directional Valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 878-882. doi: 10.13433/j.cnki.1003-8728.20220026
Citation: ZHAO Guochao, ZHOU Guoqiang, WANG Hui, LI Nanqi. Dynamic Response Characteristics and Stability Analysis of Rotary Directional Valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 878-882. doi: 10.13433/j.cnki.1003-8728.20220026

旋转式换向阀的动态响应特性及稳定性分析

doi: 10.13433/j.cnki.1003-8728.20220026
基金项目: 国家自然科学基金项目(52204169)与辽宁工程技术大学博士启动基金项目(21-1024)
详细信息
    作者简介:

    赵国超(1992−),讲师,硕士生导师,研究方向为电液激振技术,abczgccba@126.com

  • 中图分类号: TH137;TB126

Dynamic Response Characteristics and Stability Analysis of Rotary Directional Valve

  • 摘要: 为了实现电液激振系统的高频振动,提出一种旋转式换向阀。推导了旋转换向阀的动力学方程并通过MATLAB对旋转换向阀的动态响应特性进行数值求解,分析了阻尼系数、转动惯量、液动力矩对旋转换向阀动态响应特性及稳定性的影响规律。研究结果表明:阻尼系数、转动惯量、液动力矩对旋转换向阀的响应速度、稳定性及工作带宽均有较大影响,其中液动力矩对旋转换向阀的影响程度最强,阻尼系数对旋转换向阀的影响程度最弱。研究结果可为提高旋转换向阀的动态响应特性及稳定性提供数据支撑和优化导向。
  • 图  1  旋转式换向阀

    图  2  阀芯的力学模型

    图  3  不同阻尼系数时旋转换向阀的动态特性

    图  4  不同转动惯量时旋转换向阀的动态特性

    图  5  不同液动力矩时旋转换向阀的动态特性

  • [1] 魏华, 任燕, 季献铖, 等. 电液式大功率清洗装置的设计[J]. 液压与气动, 2019(3): 32-37. doi: 10.11832/j.issn.1000-4858.2019.03.006

    WEI H, REN Y, JI X C, et al. Design of electrohydraulic high power cleaning device[J]. Chinese Hydraulics & Pneumatics, 2019(3): 32-37. (in Chinese) doi: 10.11832/j.issn.1000-4858.2019.03.006
    [2] 李胜, 阮健, 孟彬. 二维电液比例换向阀动态特性及稳定性分析[J]. 机械工程学报, 2016, 52(2): 202-212. doi: 10.3901/JME.2016.02.202

    LI S, RUAN J, MENG B. Two-dimensional electro-hydraulic proportional directional valve[J]. Journal of Mechanical Engineering, 2016, 52(2): 202-212. (in Chinese) doi: 10.3901/JME.2016.02.202
    [3] 刘毅, 龚国芳, 闵超庆. 捣固机械激振技术现状与展望[J]. 机械工程学报, 2013, 49(16): 138-146. doi: 10.3901/JME.2013.16.138

    LIU Y, GONG G F, MIN C Q. Present status and prospect of tamping device exciting technology[J]. Journal of Mechanical Engineering, 2013, 49(16): 138-146. (in Chinese) doi: 10.3901/JME.2013.16.138
    [4] LIU Y, GONG G F, YANG H Y, et al. Regulating characteristics of new tamping device exciter controlled by rotary valve[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 497-505.
    [5] 李伟荣, 阮健, 任燕, 等. 2D阀控单出杆激振缸低频特性研究[J]. 中国机械工程, 2014, 25(1): 97-102. doi: 10.3969/j.issn.1004-132X.2014.01.019

    LI W R, RUAN J, REN Y, et al. Research on low-frequency characteristics of one-pole vibration cylinder controlled by 2D valve[J]. China Mechanical Engineering, 2014, 25(1): 97-102. (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.01.019
    [6] 张啟晖, 熊伟, 阮健, 等. 车辆换档用2D数字缓冲阀的研究[J]. 机械工程学报, 2018, 54(20): 206-212.

    ZHANG Q H, XIONG W, RUAN J, et al. Research on 2D digital buffering valve for vehicle shift[J]. Journal of Mechanical Engineering, 2018, 54(20): 206-212. (in Chinese)
    [7] LIU Y, CHENG S K, GONG G F, et al. Structure characteristics of valve port in the rotation-spool-type electro-hydraulic vibrator[J]. Journal of Vibration and Control, 2017, 23(13): 2179-2189. doi: 10.1177/1077546315612903
    [8] 贾文昂, 阮健. 电液疲劳试验系统的变谐振控制技术研究[J]. 振动与冲击, 2016, 35(7): 10-14. doi: 10.13465/j.cnki.jvs.2016.07.002

    JIA W A, RUAN J. Variable resonant technique for an electro-hydraulic fatigue test system[J]. Journal of Vibration and Shock, 2016, 35(7): 10-14. (in Chinese) doi: 10.13465/j.cnki.jvs.2016.07.002
    [9] 任燕, 阮健, 贾文昂. 2D阀控电液激振器低频段振动波形分析[J]. 农业机械学报, 2010, 41(9): 187-193.

    REN Y, RUAN J, JIA W A. Low frequency excited waveforms analysis of an electro-hydraulic vibration exciter using a 2D valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 187-193. (in Chinese)
    [10] 赵国超, 王慧, 宋宇宁, 等. 旋转式激振阀流场动态特性模拟及实验验证[J]. 机械科学与技术, 2020, 39(4): 567-573. doi: 10.13433/j.cnki.1003-8728.20190185

    ZHAO G C, WANG H, SONG Y N, et al. Simulation and experimental verification of flow field dynamic characteristics of rotary excitation valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 567-573. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190185
    [11] ZHU M Z, ZHAO S D, LI J X, et al. Computational fluid dynamics and experimental analysis on flow rate and torques of a servo direct drive rotary control valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(1): 213-226. doi: 10.1177/0954406218756449
    [12] WANG H, WANG C W, QUAN L, et al. Analytical solution to orifice design in a rotary valve controlled electro-hydraulic vibration exciter for high-frequency sinusoidal vibration waveform[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2019, 233(5): 1098-1108. doi: 10.1177/0954408919831123
    [13] ZHU M Z, ZHAO S D, DONG P, et al. Design and analysis of a novel double-servo direct drive rotary valve with high frequency[J]. Journal of Mechanical Science and Technology, 2018, 32(9): 4313-4323. doi: 10.1007/s12206-018-0829-x
    [14] WANG H, GONG G F, ZHOU H B, et al. Steady flow torques in a servo motor operated rotary directional control valve[J]. Energy Conversion and Management, 2016, 112: 1-10. doi: 10.1016/j.enconman.2015.11.054
    [15] WANG H, GONG G F, ZHOU H B, et al. A rotary valve controlled electro-hydraulic vibration exciter[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(19): 3397-3407. doi: 10.1177/0954406215615156
  • 加载中
图(5)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回