留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑磨削热变形的表面微观形貌建模与仿真

胡宁 陈海锋

胡宁,陈海锋. 考虑磨削热变形的表面微观形貌建模与仿真[J]. 机械科学与技术,2023,42(5):772-778 doi: 10.13433/j.cnki.1003-8728.20220019
引用本文: 胡宁,陈海锋. 考虑磨削热变形的表面微观形貌建模与仿真[J]. 机械科学与技术,2023,42(5):772-778 doi: 10.13433/j.cnki.1003-8728.20220019
HU Ning, CHEN Haifeng. Modeling and Simulation of Grinding Surface Microtopography Considering Grinding Thermal Deformation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 772-778. doi: 10.13433/j.cnki.1003-8728.20220019
Citation: HU Ning, CHEN Haifeng. Modeling and Simulation of Grinding Surface Microtopography Considering Grinding Thermal Deformation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 772-778. doi: 10.13433/j.cnki.1003-8728.20220019

考虑磨削热变形的表面微观形貌建模与仿真

doi: 10.13433/j.cnki.1003-8728.20220019
基金项目: 国家自然科学基金项目(51605160)与湖南省自然科学基金项目(2020JJ5169)
详细信息
    作者简介:

    胡宁(1996−),硕士研究生,研究方向为磨削加工表面微观形貌的仿真与研究,872205940@qq.com

    通讯作者:

    陈海锋,副教授,硕士生导师,chenhf1986@126.com

  • 中图分类号: TG580

Modeling and Simulation of Grinding Surface Microtopography Considering Grinding Thermal Deformation

  • 摘要: 针对磨削热引起的工件热胀冷缩效应对磨削后的工件表面微观形貌的影响,提出一种考虑磨削热变形影响的磨削表面微观形貌建模方法。假设磨粒为正四面体建立砂轮形貌;根据磨削运动学原理,建立考虑磨削热变形效应的单颗磨粒三维切削轨迹,并结合砂轮形貌与单颗磨粒轨迹,建立磨削表面微观形貌预测模型,通过磨削实验对仿真结果进行验证,结果为该模型最小误差仅0.135%,最大误差为13.31%,验证了在磨削热变形效应影响下的仿真结果的准确性。
  • 图  1  考虑磨削热变形的磨削示意图

    图  2  磨粒切削实时截面图

    图  3  单颗磨粒G的三维轨迹图

    图  4  平面工件磨削表面形貌仿真流程

    图  5  齿轮钢平面磨削装置

    图  6  考虑磨削热变形的优化仿真微观形貌

    图  7  不同砂轮转速下实验与仿真粗糙度

    图  8  不同磨削深度下实验与仿真粗糙度

    表  1  干研磨磨削加工参数

    参数数值
    砂轮粒度M 120
    砂轮直径ds/mm 100
    砂轮宽度b/mm 10
    工件尺寸 L16-W9-T9
    磨削主轴转速 vs /
    ( r·min−1)
    400,800,1200,
    1600,2000,2400
    切削深度/mm 0.005,0.01,0.015,
    0.02,0.025,0.03
    进给速率/(mm·min−1) 300
    下载: 导出CSV

    表  2  关于实验与仿真结果之间的粗糙度对比表

    砂轮转速/
    (r·min−1
    切削深度/
    mm
    实验测得形貌
    粗糙度Sa/μm
    考虑磨削相变的仿真模型
    粗糙度Sa/μm
    仿真与实验对比
    误差/%
    4000.011.3221.145713.31
    8000.8880.88680.135
    12000.8790.87380.592
    16000.7370.78105.967
    20000.6700.67681.015
    24000.6130.59902.282
    12000.0050.8410.85832.057
    0.010.8790.87380.592
    0.0150.9240.90002.597
    0.020.9320.91751.556
    0.0250.9440.92192.344
    0.030.9680.92624.314
    下载: 导出CSV
  • [1] 陈海锋, 唐进元, 邓朝晖, 等. 考虑耕犁的超声磨削表面微观形貌建模与预测[J]. 机械工程学报, 2018, 54(21): 231-240. doi: 10.3901/JME.2018.21.231

    CHEN H F, TANG J Y, DENG Z H, et al. Modeling and predicting surface topography of the ultrasonic assisted grinding process considering ploughing action[J]. Journal of Mechanical Engineering, 2018, 54(21): 231-240. (in Chinese) doi: 10.3901/JME.2018.21.231
    [2] 谷倩微, 邓朝晖, 吕黎曙, 等. 磨削表面形貌建模研究进展[J]. 宇航材料工艺, 2021, 51(2): 1-10.

    GU Q W, DENG Z H, LV L S, et al. Research progress of grinding surface topography modeling[J]. Aerospace Materials & Technology, 2021, 51(2): 1-10. (in Chinese)
    [3] 刘金华, 明兴祖, 高钦. 基于正交实验分析的面齿轮磨削表面粗糙度的研究[J]. 机械传动, 2019, 41(9): 1-5. doi: 10.16578/j.issn.1004.2539.2017.09.001

    LIU J H, MING X Z, GAO Q. Research of grinding surface roughness of face gear based on analysis of orthogonal experiment[J]. Journal of Mechanical Transmission, 2019, 41(9): 1-5. (in Chinese) doi: 10.16578/j.issn.1004.2539.2017.09.001
    [4] ALAO A R, KONNEH M. Surface finish prediction models for precision grinding of silicon[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12): 949-967. doi: 10.1007/s00170-011-3438-8
    [5] 梁志强, 黄迪青, 周天丰, 等. 螺旋伞齿轮磨削表面形貌仿真与试验研究[J]. 机械工程学报, 2019, 55(3): 191-198. doi: 10.3901/JME.2019.03.191

    LIANG Z Q, HUANG D Q, ZHOU T F, et al. Simulation and experimental research on grinding surface topography of spiral bevel gear[J]. Journal of Mechanical Engineering, 2019, 55(3): 191-198. (in Chinese) doi: 10.3901/JME.2019.03.191
    [6] ZHOU W H, TANG J Y, CHEN H F, et al. A comprehensive investigation of plowing and grain-workpiece micro interactions on 3D ground surface topography[J]. International Journal of Mechanical Sciences, 2018, 144: 639-653. doi: 10.1016/j.ijmecsci.2018.06.024
    [7] WANG S, LI C H, ZHANG D K, et al. Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5-8): 835-850. doi: 10.1007/s00170-014-6032-z
    [8] 张生武. 机械加工参数对表面形貌及接触特性参数的影响研究[D]. 西安: 西安理工大学, 2020

    ZHANG S W. Research on the influence of machining parameters on surface morphology and contact characteristics parameters[D]. Xi'an: Xi'an University of Technology, 2020. (in Chinese)
    [9] 张勇, 黄其圣, 胡鹏浩. 磨削加工中圆柱体零件热变形研究[J]. 合肥工业大学学报(自然科学版), 2002, 25(2): 178-181.

    ZHANG Y, HUANG Q S, HU P H. Thermal deformation of cylindrical parts in grinding[J]. Journal of Hefei University of Technology (Natural Science), 2002, 25(2): 178-181. (in Chinese)
    [10] 李通. 预加热磨削强化表面残余应力仿真和实验研究[D]. 长沙: 湖南大学, 2017

    LI T. Simulation and experimental study on the residual stress in the surface of pre-heating grind-hardening[D]. Changsha: Hunan University, 2017. (in Chinese)
    [11] 刘瑶, 周雯雯, 权宇. 基于砂轮表面磨粒特性的磨削表面粗糙度建模[J]. 组合机床与自动化加工技术, 2020(12): 149-152. doi: 10.13462/j.cnki.mmtamt.2020.12.035

    LIU Y, ZHOU W W, QUAN Y. Modeling of ground surface roughness based on the grinding wheel tomography[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(12): 149-152. (in Chinese) doi: 10.13462/j.cnki.mmtamt.2020.12.035
    [12] AGARWAL S, RAO P V. Modeling and prediction of surface roughness in ceramic grinding[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12): 1065-1076. doi: 10.1016/j.ijmachtools.2010.08.009
    [13] DOMAN D A, WARKENTIN A, BAUER R. A survey of recent grinding wheel topography models[J]. International Journal of Machine Tools and Manufacture, 2006, 46(3-4): 343-352. doi: 10.1016/j.ijmachtools.2005.05.013
    [14] NGUYEN T A, BUTLER D L. Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece[J]. International Journal of Machine Tools and Manufacture, 2005, 45(11): 1329-1336. doi: 10.1016/j.ijmachtools.2005.01.006
    [15] CHEN X, ROWE W B. Analysis and simulation of the grinding process Part II: mechanics of grinding[J]. International Journal of Machine Tools and Manufacture, 1996, 36(8): 883-896. doi: 10.1016/0890-6955(96)00117-4
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  99
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回