留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某动力涡轮转子连接圆弧端齿的优化设计

徐鲁兵 廖明夫 吕延军

徐鲁兵,廖明夫,吕延军. 某动力涡轮转子连接圆弧端齿的优化设计[J]. 机械科学与技术,2023,42(6):969-977 doi: 10.13433/j.cnki.1003-8728.20220009
引用本文: 徐鲁兵,廖明夫,吕延军. 某动力涡轮转子连接圆弧端齿的优化设计[J]. 机械科学与技术,2023,42(6):969-977 doi: 10.13433/j.cnki.1003-8728.20220009
XU Lubing, LIAO Mingfu, LYU Yanjun. Design Optimization on Curvic Couplings of A Power Turbine Rotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 969-977. doi: 10.13433/j.cnki.1003-8728.20220009
Citation: XU Lubing, LIAO Mingfu, LYU Yanjun. Design Optimization on Curvic Couplings of A Power Turbine Rotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 969-977. doi: 10.13433/j.cnki.1003-8728.20220009

某动力涡轮转子连接圆弧端齿的优化设计

doi: 10.13433/j.cnki.1003-8728.20220009
详细信息
    作者简介:

    徐鲁兵(1981−),高级工程师,博士研究生,研究方向为航空发动机结构强度与振动、动力学设计,lubinxu@163.com

    通讯作者:

    廖明夫,教授,博士生导师,mfliao@nwpu.edu.cn

  • 中图分类号: V232.7; TH132.4

Design Optimization on Curvic Couplings of A Power Turbine Rotor

  • 摘要: 针对圆弧端齿开设螺栓孔会破坏圆弧端齿齿形结构的完整性、产生局部应力集中等问题,建立了带有螺栓预紧的动力涡轮盘轴圆弧端齿连接转子优化模型,基于ANSYS优化平台进行了带螺栓孔的圆弧端齿结构优化设计。分析结果表明,螺栓孔的开设对圆弧端齿齿底的强度削弱作用要比对凹(凸)齿本身的大,且将螺栓孔径向分布在圆弧端齿的节圆直径附近有利于降低圆弧端齿结构的应力和改善应力分布;在满足其他应力约束条件下,优化后的圆弧端齿最大等效应力比原始方案降低9.1%,端齿工作面最大接触应力降低44.6%,改善了圆弧端齿齿根附近的应力分布状态,同时也没有对动力涡轮盘轴转子变形产生影响。
  • 图  1  动力涡轮转子及轴端圆弧端齿的三维模型

    图  2  动力涡轮转子及轴端圆弧端齿的有限元模型

    图  3  设计变量齿宽B值的优化迭代过程

    图  4  设计变量外径D0的优化迭代过程

    图  5  优化目标的收敛情况

    图  6  归一化状态变量的优化迭代过程

    图  7  动力涡轮转子的变形分布图

    图  8  动力涡轮转子的全局等效应力分布图

    图  9  优化前、后的凹齿圆弧端齿等效应力分布图

    图  10  优化前、后的凸齿圆弧端齿等效应力分布图

    图  11  优化前、后的凹齿圆弧端齿径向应力分布图

    图  12  优化前、后的凸齿圆弧端齿径向应力分布图

    图  13  优化前、后的凹齿圆弧端齿周向应力分布图

    图  14  优化前、后的凸齿圆弧端齿周向应力分布图

    图  15  端齿(凹齿)接触面接触状态分布图

    图  16  优化前、后的端齿(凹齿)接触面接触压力分布图

    图  17  优化前、后的端齿(凹齿)接触表面滑移分布图

    表  1  动力涡轮转子设计参数

    内容参数
    动力涡轮轴段 材料:锻件GH4169 温度:250 ℃
    动力涡轮盘 材料:锻件GH4169;法兰边温度:350 ℃;盘缘温度:475 ℃
    转子轴向力/N 7300
    螺栓预紧力/N 253750
    设计转速/(r·min–1 20900
    扭矩/Nm 870
    圆弧端齿参数 齿数20,螺栓孔10处均布
    下载: 导出CSV

    表  2  优化前、后的圆弧端齿齿形参数

    参数原始尺寸优化后尺寸
    齿数$ Z $ 20 20
    压力角$ \theta /(^{\circ}) $ 30 30
    外径${D}_{{\rm{0}}}$/mm 98 97.18
    齿宽B/mm 17 16.47
    内径$ {D}_{i} $/mm 64 64.24
    螺栓孔中径$ {D}_{c} $/mm 79 80.71
    节圆直径$ {D}_{m} $/mm 81 80.71
    齿顶高$ {h}_{a} $/mm 1.35 1.33
    齿根高$ {h}_{b} $/mm 1.85 1.67
    齿顶倒角高$ {h}_{c} $/mm 0.3 0.31
    齿根倒角半径$ {R}_{b} $/mm 1 0.99
    下载: 导出CSV

    表  3  优化前、后的圆弧端齿有限元应力结果

    应力优化前/MPa优化后/MPa
    最大等效应力 956(凹齿) 869(凹齿)
    708(凸齿) 819(凸齿)
    最大径向应力 225(凹齿) 190(凹齿)
    308(凸齿) 294(凸齿)
    最大周向应力 990.8(凹齿) 870.7(凹齿)
    706(凸齿) 672(凸齿)
    最大轴向应力 270.7 230.5
    接触面最大接触应力 829.4 459.3
    接触面平均挤压应力 203.4 225.6
    接触面平均剪切应力 101.4 111.3
    下载: 导出CSV
  • [1] Gleason Works. Curvic coupling design[M]. New York: Rochester, 1979
    [2] 陈光. EJ200发动机高压压气机结构设计改进[J]. 航空发动机, 2004, 30(2): 1-4. doi: 10.3969/j.issn.1672-3147.2004.02.001

    CHEN G. Improved design of the EJ200 HP compressor[J]. Aeroengine, 2004, 30(2): 1-4. (in Chinese) doi: 10.3969/j.issn.1672-3147.2004.02.001
    [3] 陈光, 洪杰, 马艳红. 航空燃气涡轮发动机结构[M]. 北京: 北京航空航天大学出版社, 2010

    CHEN G, HONG J, MA Y H. Structure design of aero gas turbine engine[M]. Beijing: Beihang University Press, 2010. (in Chinese)
    [4] 洪杰, 马艳红, 张大义. 航空燃气轮机总体结构设计与动力学分析[M]. 北京: 北京航空航天大学出版社, 2014

    HONG J, MA Y H, ZHANG D Y. Structure design and dynamic analysis of aero gas turbine engines[M]. Beijing: Beihang University Press, 2014. (in Chinese)
    [5] 李业明. 大功率机车弹性联轴器及圆弧端齿联结技术研究[D]. 成都: 西南交通大学, 2009

    LI Y M. Study on the flexible coupling and arc tooth connection technology for the superpower locomotive[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
    [6] 李业明, 张红军, 姚远. 大功率机车驱动系统联轴器弧齿端齿盘结构性能分析及参数优化[J]. 铁道机车车辆, 2009, 29(6): 31-33. doi: 10.3969/j.issn.1008-7842.2009.06.010

    LI Y M, ZHANG H J, YAO Y. Structure performance analysis and parameter optimization for the arc tooth transverse teeth gear of high-power locomotive drive system coupling[J]. Railway Locomotive & Car, 2009, 29(6): 31-33. (in Chinese) doi: 10.3969/j.issn.1008-7842.2009.06.010
    [7] YUAN S X, ZHANG Y Y, ZHANG Y C, et al. Stress distribution and contact status analysis of a bolted rotor with curvic couplings[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(9): 1815-1829. doi: 10.1243/09544062JMES1853
    [8] 袁淑霞, 张优云, 蒋翔俊, 等. 拉杆失谐模型及其对端面弧齿应力分布的影响[J]. 哈尔滨工业大学学报, 2013, 45(5): 64-69. doi: 10.11918/j.issn.0367-6234.2013.05.012

    YUAN S X, ZHANG Y Y, JIANG X J, et al. Analysis of bolt preload mistuned model and its impact on stress distribution of curvic couplings[J]. Journal of Harbin Institute of Technology, 2013, 45(5): 64-69. (in Chinese) doi: 10.11918/j.issn.0367-6234.2013.05.012
    [9] 袁淑霞, 张优云, 朱永生. 重型燃气轮机端面弧齿动力学特性及动应力研究[J]. 动力工程学报, 2018, 38(11): 895-901. doi: 10.3969/j.issn.1674-7607.2018.11.006

    YUAN S X, ZHANG Y Y, ZHU Y S. Research on dynamic characteristics and dynamic stress of curvic couplings in heavy-duty gas turbines[J]. Journal of Chinese Society of Power Engineering, 2018, 38(11): 895-901. (in Chinese) doi: 10.3969/j.issn.1674-7607.2018.11.006
    [10] RICHARDSON I J, HYDE T M, BECKER A A, et al. A comparison of two- and three-dimensional finite element contact analyses of curvic couplings[C]// Stuttgart: International Conference on Computational Methods in Contact Mechanics IV, 1999: 389-399
    [11] RICHARDSON I J, HYDE T M, BECKER A A, et al. A three-dimensional finite element investigation of the bolt stresses in an aero-engine Curvic coupling under a blade release condition[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(4): 231-245. doi: 10.1243/0954410001532033
    [12] JIANG X J, ZHANG Y Y, WANG X, et al. Alleviation for contact stresses in curvic attachments[J]. Journal of Harbin Institute of Technology, 2011, 18(5): 65-70.
    [13] 李浦, 袁奇, 高进, 等. 周向拉杆转子轮盘端面齿接触应力分析[J]. 热力透平, 2013, 42(1): 25-29. doi: 10.3969/j.issn.1672-5549.2013.01.005

    LI P, YUAN Q, GAO J, et al. Contact stress analysis of curvic coupling of circumferential tie rotor[J]. Thermal Turbine, 2013, 42(1): 25-29. (in Chinese) doi: 10.3969/j.issn.1672-5549.2013.01.005
    [14] 沈祥, 曹鹏. 涡轴发动机端齿连接结构接触状态分析[J]. 航空发动机, 2017, 43(4): 35-40.

    SHEN X, CAO P. Contact state analysis of turboshaft engine rotor with curvic-coupling joint structure[J]. Aeroengine, 2017, 43(4): 35-40. (in Chinese)
    [15] YU Y H, LEE B, CHO Y. Analysis of contact and bending stiffness for Curvic couplings considering contact angle and surface roughness[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2019, 233(6): 1257-1267. doi: 10.1177/0954408919861609
    [16] LIU H, HONG J, RUAN S L, et al. A model accounting for stiffness weakening of curvic couplings under various loading conditions[J]. Mathematical Problems in Engineering, 2020, 2020: 1042375.
    [17] LIU H, HONG J, ZHANG D Y. Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces[J]. Frontiers of Mechanical Engineering, 2020, 15(3): 417-429. doi: 10.1007/s11465-019-0584-4
    [18] 马伍, 王艾伦, 王海, 等. 考虑齿面粗糙度的端齿连接结构接触刚度求解方法研究[J]. 机械强度, 2020, 42(6): 1389-1395.

    MA W, WANG A L, WANG H, et al. Research on solution method of contact stiffness of curvic couplings considering tooth surface roughness[J]. Journal of Mechanical Strength, 2020, 42(6): 1389-1395. (in Chinese)
    [19] 杨郑烈, 王艾伦, 张海彪, 等. 考虑接触效应的端齿连接转子动力学特性研究[J]. 机械强度, 2020, 42(6): 1489-1495.

    YANG Z L, WANG A L, ZHANG H B, et al. Study on dynamic characteristics of end-toothed connection rotor considering contact effect[J]. Journal of Mechanical Strength, 2020, 42(6): 1489-1495. (in Chinese)
    [20] MUJU S, SANDOVAL R S. Curvic coupling fatigue life enhancement through unique compound root fillet design: US, 6672966B2[P]. 2004-01-06
    [21] PISANI S R, RENCIS J J. Investigating CURVIC Coupling behavior by utilizing two- and three-dimensional boundary and finite element methods[J]. Engineering Analysis with Boundary Elements, 2000, 24(3): 271-275. doi: 10.1016/S0955-7997(99)00057-0
    [22] 黄发. 圆弧端齿结构设计方法研究[D]. 南京: 南京航空航天大学, 2013

    HUANG F. Design method of curvic couplings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [23] 李爱民. 圆弧端齿结构设计方法与微动疲劳寿命预测模型研究[D]. 南京: 南京航空航天大学, 2015

    LI A M. Research on design method of curvic couplings and fretting fatigue life prediction model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [24] 李爱民, 崔海涛, 温卫东, 等. 航空圆弧端齿的齿根双圆弧结构设计及优化[J]. 推进技术, 2016, 37(1): 146-155. doi: 10.13675/j.cnki.tjjs.2016.01.019

    LI A M, CUI H T, WEN W D, et al. Design and optimization of curvic coupling with double circular-arc root fillet in aero-engine[J]. Journal of Propulsion Technology, 2016, 37(1): 146-155. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.01.019
    [25] 罗凯琳. 考虑微动损伤影响的圆弧端齿优化设计方法研究[D]. 南京: 南京航空航天大学, 2017

    LUO K L. Research on curvic couplings structure optimization considering the effects of fretting fatigue[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [26] 国际航空编辑部. 斯贝MK202发动机应力标准(EGD-3)[M]. 北京: 国际航空编辑部, 1979

    International Aviation Editorial Department. Stress standard of spey MK202 engine EGD-3[M]. Beijing: International Aviation Editorial, 1979. (in Chinese)
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  130
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回