留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

递归特征消除与极端随机树在铣刀磨损监测中的研究

刘献礼 秦怡源 岳彩旭 魏旭东 孙艳明 郭斌

刘献礼,秦怡源,岳彩旭, 等. 递归特征消除与极端随机树在铣刀磨损监测中的研究[J]. 机械科学与技术,2023,42(6):821-828 doi: 10.13433/j.cnki.1003-8728.20220001
引用本文: 刘献礼,秦怡源,岳彩旭, 等. 递归特征消除与极端随机树在铣刀磨损监测中的研究[J]. 机械科学与技术,2023,42(6):821-828 doi: 10.13433/j.cnki.1003-8728.20220001
LIU Xianli, QIN Yiyuan, YUE Caixu, WEI Xudong, SUN Yanming, GUO Bin. Application Research on Recursive Feature Elimination and Extra Trees in Milling Cutter Wear Monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 821-828. doi: 10.13433/j.cnki.1003-8728.20220001
Citation: LIU Xianli, QIN Yiyuan, YUE Caixu, WEI Xudong, SUN Yanming, GUO Bin. Application Research on Recursive Feature Elimination and Extra Trees in Milling Cutter Wear Monitoring[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 821-828. doi: 10.13433/j.cnki.1003-8728.20220001

递归特征消除与极端随机树在铣刀磨损监测中的研究

doi: 10.13433/j.cnki.1003-8728.20220001
基金项目: 国家重点研发项目(2019YFB1704800)与黑龙江省优秀青年基金项目(YQ2019E029)
详细信息
    作者简介:

    秦怡源:刘献礼(1961−),教授,博士生导师,研究方向为刀具智能监测,xlliu@hrbust.edu

  • 中图分类号: TG714;TP181

Application Research on Recursive Feature Elimination and Extra Trees in Milling Cutter Wear Monitoring

  • 摘要: 针对金属铣削过程中刀具磨损监测问题,本文提出了一种基于递归特征消除和极端随机树相结合的刀具磨损监测模型。首先对力、振动和声发射信号的时域、频域特征进行提取,分别采用逻辑回归、分类与回归树、线性回归、线性判别分析作为递归特征消除的基模型进行特征降维。再利用处理后的特征对K近邻、支持向量回归、极端随机树模型进行训练,得出多种监测模型。通过对比刀具磨损拟合曲线图和分析评估结果的标准差,可得出基模型为分类与回归树的递归特征消除,与极端随机树算法相结合模型拟合度达到99.74%,评估结果的标准差为4.04。结果表明该方法能够实现对铣刀磨损的有效监测,从而提高零件加工质量。
  • 图  1  刀具铣削多传感信号采集示意图

    图  2  特征数量评分

    图  3  CART-RFE和ET模型流程图

    图  4  基于LR1-RFE分别和3种算法结合的刀具磨损拟合曲线图

    图  5  基于CART-RFE分别和3种算法结合的刀具磨损拟合曲线图

    图  6  基于LR2-RFE分别和3种算法结合的刀具磨损拟合曲线图

    图  7  基于LDA-RFE分别和3种算法结合的刀具磨损拟合曲线图

    表  1  每组最佳特征数量

    LR1-RFECART-RFELR2-RFELDA-RFE
    59153157
    下载: 导出CSV

    表  2  特征排序

    名次LR1-RFECART-RFELR2-RFELDA-RFE
    1 频率平均值Vy 频率的根方差Vx 最小频率Vy 频率的峰度Fy
    2 频率平均值AE Peak value Fy 最小频率Fz 频率的峰度Fz
    3 频率平均值Fy 频率平均值Vx 最小频率Vx 频率的峰度Fx
    4 频率平均值Vx 频谱均值Vx 最小频率Fy 频率的峰度AE
    5 频率平均值Fx THD Fx 最小频率AE 频率的峰度Vy
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    156 频率的峰度Fx 频率的峰度Vz 频率的偏斜系数AE 频率平均值Vy
    157 频率的峰度Fz 频率的峰度AE 频率平均值Fz 频率平均值Fz
    下载: 导出CSV

    表  3  决策树数量评分

    决策树数量评分结果标准方差
    20−99.41779414.471892
    30−103.12586415.818076
    40−98.54935514.460887
    50−97.99529513.652701
    60−96.01461314.592283
    70−100.10059314.644818
    80−96.18394615.307290
    90−98.71890816.066450
    下载: 导出CSV

    表  4  模型拟合度(评估结果的标准差)

    特征集特征个数KNNSVCET
    LR1-RFE (FD1) 5 95.38%
    (72.43)
    91.93%
    (126.48)
    96.67%
    (52.19)
    CART-RFE (FD2) 9 99.33%
    (10.47)
    96.17%
    (59.95)
    99.74%
    (4.04)
    LR2-RFE (FD3) 153 99.02%
    (15.31)
    98.72%
    (19.93)
    99.82%
    (2.76)
    LDA-RFE (FD4) 157 98.95%
    (16.41)
    98.77%
    (19.28)
    98.51%
    (23.28)
    下载: 导出CSV
  • [1] 袁军, 刘丽冰, 张艳蕊, 等. 刀具磨损状况的检测方法研究综述[J]. 现代制造工程, 2021(3): 152-160. doi: 10.16731/j.cnki.1671-3133.2021.03.024

    YUAN J, LIU L B, ZHANG Y R, et al. Survey of research on detection methods for tool wear condition[J]. Modern Manufacturing Engineering, 2021(3): 152-160. (in Chinese) doi: 10.16731/j.cnki.1671-3133.2021.03.024
    [2] 周明佳, 孙艳茹, 逄崇雁. 刀具磨损对屑形变化的影响分析[J]. 科学技术创新, 2021(6): 180-181. doi: 10.3969/j.issn.1673-1328.2021.06.080

    ZHOU M J, SUN Y R, PANG C Y. Analysis of the influence of tool wear on chip shape change[J]. Scientific and Technological Innovation, 2021(6): 180-181. (in Chinese) doi: 10.3969/j.issn.1673-1328.2021.06.080
    [3] BIST A, SAINI J S, SHARMA B. A review of tool wear prediction during friction stir welding of aluminium matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8): 2003-2018. doi: 10.1016/S1003-6326(16)64318-2
    [4] ULAPANE N, NGUYEN L. Review of pulsed-eddy-current signal feature-extraction methods for conductive ferromagnetic material-thickness quantification[J]. Electronics, 2019, 8(5): 470. doi: 10.3390/electronics8050470
    [5] OU J Y, LI H K, HUANG G J, et al. A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring[J]. Sensors, 2020, 20(10): 2878. doi: 10.3390/s20102878
    [6] HELMI H, FOROUZANTABAR A. Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS[J]. IET Electric Power Applications, 2019, 13(5): 662-669. doi: 10.1049/iet-epa.2018.5274
    [7] JUNIOR P O C, AGUIAR P R, FOSCHINI C R, et al. Feature extraction using frequency spectrum and time domain analysis of vibration signals to monitoring advanced ceramic in grinding process[J]. IET Science, Measurement & Technology, 2019, 13(1): 1-8.
    [8] RAY P, REDDY S S, BANERJEE T. Various dimension reduction techniques for high dimensional data analysis: a review[J]. Artificial Intelligence Review, 2021, 54(5): 3473-3515. doi: 10.1007/s10462-020-09928-0
    [9] 王二化, 刘颉. 基于主成分分析和BP神经网络的微铣刀磨损在线监测[J]. 组合机床与自动化加工技术, 2021(1): 114-117. doi: 10.13462/j.cnki.mmtamt.2021.01.027

    WANG E H, LIU J. Online wear monitoring of micro milling tool based on principal component analysis and BP neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(1): 114-117. (in Chinese) doi: 10.13462/j.cnki.mmtamt.2021.01.027
    [10] CHEN G S, ZHENG Q Z. Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1): 775-784.
    [11] 赵明利, 袁一鸣, 宋士杰, 等. 基于特征选择和模糊支持向量机的刀具磨损状态识别[J]. 制造技术与机床, 2020(11): 115-120. doi: 10.19287/j.cnki.1005-2402.2020.11.024

    ZHAO M L, YUAN Y M, SONG S J, et al. Tools wear state recognition based on feature selection and fuzzy support vector machine[J]. Manufacturing Technology & Machine Tool, 2020(11): 115-120. (in Chinese) doi: 10.19287/j.cnki.1005-2402.2020.11.024
    [12] 范云龙, 陈劲杰. 基于KNN的刀具磨损状态检测[J]. 农业装备与车辆工程, 2019, 57(9): 74-75. doi: 10.3969/j.issn.1673-3142.2019.09.017

    FAN Y L, CHEN J J. Tool wear state detection based on KNN[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(9): 74-75. (in Chinese) doi: 10.3969/j.issn.1673-3142.2019.09.017
    [13] 聂鹏, 李锋, 李正强. 基于云模型和稀疏贝叶斯技术的刀具磨损状态识别技术研究[J]. 机电信息, 2017(33): 102-103. doi: 10.3969/j.issn.1671-0797.2017.33.056

    NIE P, LI F, LI Z Q. Research on tool wear state recognition technology based on cloud model and sparse bayesian technology[J]. Mechanical and Electrical Information, 2017(33): 102-103. (in Chinese) doi: 10.3969/j.issn.1671-0797.2017.33.056
    [14] 赵帅, 黄亦翔, 王浩任, 等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报, 2017, 53(21): 181-189. doi: 10.3901/JME.2017.21.181

    ZHAO S, HUANG Y X, WANG H R, et al. Random forest and principle components analysis based on health assessment methodology for tool wear[J]. Journal of Mechanical Engineering, 2017, 53(21): 181-189. (in Chinese) doi: 10.3901/JME.2017.21.181
    [15] LYHUY P. 基于SVM的铣削过程刀具磨损状态分类研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    LYHUY P. Study on tool wear classification using support vector machines in a milling process[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [16] 陶耀东, 曾广圣, 李宁. 基于回归树和AdaBoost方法的刀具磨损评估[J]. 计算机系统应用, 2017, 26(12): 212-219. doi: 10.15888/j.cnki.csa.006117

    TAO Y D, ZENG G S, LI N. Tool wear evaluation based on decision tree regression and AdaBoost algorithm[J]. Computer Systems & Applications, 2017, 26(12): 212-219. (in Chinese) doi: 10.15888/j.cnki.csa.006117
    [17] MAO X T, ZHANG F, WANG G, et al. Semi-random subspace with Bi-GRU: fusing statistical and deep representation features for bearing fault diagnosis[J]. Measurement, 2021, 173: 108603. doi: 10.1016/j.measurement.2020.108603
    [18] CHEN Q, MENG Z P, LIU X Y, et al. Decision variants for the automatic determination of optimal feature subset in RF-RFE[J]. Genes, 2018, 9(6): 301. doi: 10.3390/genes9060301
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  125
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回