留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMWPE结合SaE-ELM的轮对轴承故障诊断方法

张龙 彭小明 熊国良 吴荣真 胡俊锋

张龙, 彭小明, 熊国良, 吴荣真, 胡俊锋. CMWPE结合SaE-ELM的轮对轴承故障诊断方法[J]. 机械科学与技术, 2023, 42(4): 512-520. doi: 10.13433/j.cnki.1003-8728.20200647
引用本文: 张龙, 彭小明, 熊国良, 吴荣真, 胡俊锋. CMWPE结合SaE-ELM的轮对轴承故障诊断方法[J]. 机械科学与技术, 2023, 42(4): 512-520. doi: 10.13433/j.cnki.1003-8728.20200647
ZHANG Long, PENG Xiaoming, XIONG Guoliang, WU Rongzhen, HU Junfeng. Fault Diagnosis of Wheelset Bearings Using CMWPE and SaE-ELM[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 512-520. doi: 10.13433/j.cnki.1003-8728.20200647
Citation: ZHANG Long, PENG Xiaoming, XIONG Guoliang, WU Rongzhen, HU Junfeng. Fault Diagnosis of Wheelset Bearings Using CMWPE and SaE-ELM[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 512-520. doi: 10.13433/j.cnki.1003-8728.20200647

CMWPE结合SaE-ELM的轮对轴承故障诊断方法

doi: 10.13433/j.cnki.1003-8728.20200647
基金项目: 

国家自然科学基金项目 51665013

国家自然科学基金项目 51865010

江西省教育厅科学技术研究项目 200616

江西省教育厅科学技术研究项目 191327

详细信息
    作者简介:

    张龙(1980-), 教授, 博士, 研究方向为故障诊断、智能算法, longzh@126.com

  • 中图分类号: TH133.33;TH165+.3

Fault Diagnosis of Wheelset Bearings Using CMWPE and SaE-ELM

  • 摘要: 针对DF4型内燃机车轮对轴承不同故障状态的判别问题, 提出了一种基于复合多尺度加权排列熵(Composit multiscale weighted permutation entropy, CMWPE)和自适应进化极限学习机(Self-adaptive evolutionary extreme learning machine, SaE-ELM)的机车轮对轴承故障识别方法。CMWPE基于复合粗粒化和加权排列熵的思想, 能很好地区分信号的不同模式。SaE-ELM通过自适应进化算法对极限学习机的输入权重、隐含层参数和输出权重进行优化, 解决了ELM随机选取网络参数的局限性, 提高了网络的泛化性能。计算机车轮对轴承不同健康状态下振动信号的CMWPE, 利用SaE-ELM识别轴承所属故障类型及故障程度。在机务段的JL-501轴承检测台上采集了7种不同健康状态的轮对轴承试件的振动信号数据。结果表明: CMWPE特征提取效果优于MPE和MWPE; SaE-ELM模式识别效果优于参数不经优化的ELM。所提方法能够有效诊断机车轮对轴承的不同故障, 且故障识别率达到100%。
  • 图  1  白噪声加脉冲信号仿真图

    图  2  仿真信号的PE和WPE对比图

    图  3  具有不同长度的1/f噪声和白噪声的MPE、MWPE和CMWPE

    图  4  SaE-ELM算法流程图

    图  5  所提故障诊断方法的流程图

    图  6  轮对轴承6种故障类型实物图

    图  7  JL-501机车轴承检测台

    图  8  机车轮对轴承7种状态的时域信号

    图  9  不同m下, CMWPE分别对两种信号分析结果

    图  10  图 8中7种轮对轴承振动信号的CMWPE

    表  1  机车轮对轴承故障类型及样本数量

    轴承健康状态 样本数量 状态标签
    正常 80 1
    外圈轻度故障 80 2
    外圈中度故障 80 3
    滚动体轻度故障 80 4
    保持架轻度故障 80 5
    保持架、滚动体复合故障 80 6
    内圈轻度故障 80 7
    下载: 导出CSV

    表  2  不同方法的准确率对比

    方法 准确率/%
    CMWPE+SaE-ELM 100
    CMWPE+ELM 98.57
    MWPE+SaE-ELM 87.14
    MPE+SaE-ELM 73.57
    下载: 导出CSV
  • [1] ZHANG C L, LIU Y L, WAN F Y, et al. Adaptive filtering enhanced windowed correlated kurtosis for multiple faults diagnosis of locomotive bearings[J]. ISA Transactions, 2020, 101: 421-429. doi: 10.1016/j.isatra.2020.01.033
    [2] WU S D, WU C W, HUMEAU-HEURTIER A. Refined scale-dependent permutation entropy to analyze systems complexity[J]. Physica A: Statistical Mechanics and its Applications, 2016, 450: 454-461. doi: 10.1016/j.physa.2016.01.044
    [3] ZHANG L, XIONG G L, LIU H S, et al. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference[J]. Expert Systems with Applications, 2010, 37(8): 6077-6085. doi: 10.1016/j.eswa.2010.02.118
    [4] ZHOU J Z, XIAO J, XIAO H, et al. Multifault diagnosis for rolling element bearings based on intrinsic mode permutation entropy and ensemble optimal extreme learning machine[J]. Advances in Mechanical Engineering, 2014, 6: 803919. doi: 10.1155/2014/803919
    [5] WU S D, WU P H, WU C W, et al. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine[J]. Entropy, 2012, 14(8): 1343-1356. doi: 10.3390/e14081343
    [6] FADLALLAH B, CHEN B D, KEIL A, et al. Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information[J]. Physical Review E, 2013, 87(2): 022911. doi: 10.1103/PhysRevE.87.022911
    [7] YIN Y, SHANG P J. Weighted multiscale permutation entropy of financial time series[J]. Nonlinear Dynamics, 2014, 78(4): 2921-2939. doi: 10.1007/s11071-014-1636-2
    [8] ZHENG J D, DONG Z L, PAN H Y, et al. Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing[J]. Measurement, 2019, 143: 69-80. doi: 10.1016/j.measurement.2019.05.002
    [9] 张龙, 成俊良, 杨世锡, 等. 基于时序模型和自联想神经网络的齿轮故障程度评估[J]. 振动与冲击, 2019, 38(2): 18-24.

    ZHANG L, CHENG J L, YANG S X, et al. Fault severity assessment for gears based on AR model and auto-associative neural network[J]. Journal of Vibration and Shock, 2019, 38(2): 18-24. (in Chinese)
    [10] 何园园, 张超, 朱腾飞. ELMD熵特征融合与PSO-SVM在齿轮故障诊断中的应用[J]. 机械科学与技术, 2019, 38(2): 271-276. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201902018.htm

    HE Y Y, ZHANG C, ZHU T F. Application of ELMD entropy feature fusion and PSO-SVM in gear fault diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2): 271-276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201902018.htm
    [11] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. doi: 10.1016/j.neucom.2005.12.126
    [12] CAO J W, LIN Z P, HUANG G B. Self-adaptive evolutionary extreme learning machine[J]. Neural Processing Letters, 2012, 36(3): 285-305. doi: 10.1007/s11063-012-9236-y
    [13] HUO Z Q, ZHANG Y, SHU L, et al. A new bearing fault diagnosis method based on fine-to-coarse multiscale permutation entropy, laplacian score and SVM[J]. IEEE Access, 2019, 7: 17050-17066. doi: 10.1109/ACCESS.2019.2893497
    [14] 姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9): 168-176.

    YAO D C, YANG J W, CHENG X Q, et al. Railway rolling bearing fault diagnosis based on muti-scale imf permutation entropy and SA-SVM classifier[J]. Journal of Mechanical Engineering, 2018, 54(9): 168-176. (in Chinese)
    [15] XIA J N, SHANG P J, WANG J, et al. Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 31(1-3): 60-68. doi: 10.1016/j.cnsns.2015.07.011
    [16] 王余奎, 李洪儒, 叶鹏. 基于多尺度排列熵的液压泵故障识别[J]. 中国机械工程, 2015, 26(4): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201504018.htm

    WANG Y K, LI H R, YE P. Fault identification of hydraulic pump based on multi-scale permutation entropy[J]. China Mechanical Engineering, 2015, 26(4): 518-523. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201504018.htm
    [17] HUO Z Q, ZHANG Y, JOMBO G, et al. Adaptive multiscale weighted permutation entropy for rolling bearing fault diagnosis[J]. IEEE Access, 2020, 8: 87529-87540. doi: 10.1109/ACCESS.2020.2992935
    [18] 岳忠奇, 吴涛, 顾宏. 基于SaCE-ELM的地铁牵引控制单元快速故障诊断[J]. 大连理工大学学报, 2016, 56(3): 270-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201603008.htm

    YUE Z Q, WU T, GU H. Fast fault diagnosis of metro traction control unit based on SaCE-ELM[J]. Journal of Dalian University of Technology, 2016, 56(3): 270-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201603008.htm
    [19] SHABANLOU S. Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels[J]. Flow Measurement and Instrumentation, 2018, 59: 63-71. https://www.sciencedirect.com/science/article/pii/S0955598617301942
    [20] TANG X F, CHEN L. A self-adaptive evolutionary weighted extreme learning machine for binary imbalance learning[J]. Progress in Artificial Intelligence, 2018, 7(2): 95-118.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  24
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回