留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载跟随阈值变化下的汽车能量管理策略

邝家凯

邝家凯. 负载跟随阈值变化下的汽车能量管理策略[J]. 机械科学与技术, 2023, 42(4): 615-621. doi: 10.13433/j.cnki.1003-8728.20200644
引用本文: 邝家凯. 负载跟随阈值变化下的汽车能量管理策略[J]. 机械科学与技术, 2023, 42(4): 615-621. doi: 10.13433/j.cnki.1003-8728.20200644
KUANG Jiakai. Automotive Energy Management Strategy with Load Following Threshold Change[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 615-621. doi: 10.13433/j.cnki.1003-8728.20200644
Citation: KUANG Jiakai. Automotive Energy Management Strategy with Load Following Threshold Change[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 615-621. doi: 10.13433/j.cnki.1003-8728.20200644

负载跟随阈值变化下的汽车能量管理策略

doi: 10.13433/j.cnki.1003-8728.20200644
基金项目: 

创新强校工程重点项目 GKJ2018012

详细信息
    作者简介:

    邝家凯(1983-), 本科, 研究方向为智能汽车系统控制及其设计, 405077409@qq.com

  • 中图分类号: U461.91

Automotive Energy Management Strategy with Load Following Threshold Change

  • 摘要: 针对并联混合动力汽车的能量管理问题, 提出了一种新的启发式控制策略, 即负载跟随阈值改变策略(LTS)。LTS控制策略基于阈值变化机制和负载跟随方法, 可以与电池荷电状态(SOC)保持成比例的微小偏差, 能够有效确保电池持续稳定运行。与目前应用阈值变化机制的规则控制策略不同, 本文设计LTS控制策略的阈值通过电池荷电状态(SOC)和发动机转速来综合调整动力输出方式, 其能量管理的精细化程度更高。为了验证策略的有效性, 将该策略应用于混合动力汽车进行仿真测试, 并与传统的等效燃油消耗率最小化策略(ECMS)和电动辅助控制策略(EACS)进行性能对比。结果表明: 在燃油经济性方面, LTS控制策略优于EACS控制策略3.1%~10.4%, LTS控制策略优于ECMS控制策略2.5%~5.7%。在电池荷电状态(SOC)方面, LTS控制策略可以使得CSO值大于60%, 电池具有较好的运行状态。
  • 图  1  并联混合动力汽车的动力总成结构

    图  2  发动机工作效率图

    图  3  电机的效率图

    图  4  两种工况的最优控制图

    图  5  ECMS的工作模式

    图  6  4种模式下的LTS控制策略运行规则

    图  7  WLTP在4个不同阶段的速度分布

    图  8  4种不同工况下的发动机功率和需求功率情况

    图  9  3种不同控制策略的SOC曲线

    表  1  整车主要技术参数

    参数 数值
    满载质量/kg 1 500
    空气阻力系数 0.34
    滚动阻力系数 0.008
    轮胎半径/m 0.286
    迎风面积/m2 2.26
    发动机最大功率/kW 63
    发动机最大转矩/Nm 145
    电机最大功率/kW 25
    电机最大转矩/Nm 128
    电池类型 铅酸电池
    放电容量/Ah 25
    主传动比 2.8
    变速器传动比 0.75~3.63
    下载: 导出CSV

    表  2  计算得到的等效系数

    工况 Sd, efc Sc, efc
    WL-L 4.40 3.77
    WL-M 4.26 3.28
    WL-H 3.70 3.12
    WL-E 3.13 2.03
    下载: 导出CSV

    表  3  不同控制策略的等效燃油消耗及最终CSO

    工况 LTS ECMS EACS
    WL-L 0.0920(65.03%) 0.0949(64.40%) 0.1016(61.69%)
    WL-M 0.1574(65.04%) 0.1639(65.01%) 0.1733(58.06%)
    WL-H 0.2539(64.88%) 0.2684(59.03%) 0.2711(53.33%)
    WL-E 0.4077(64.81%) 0.4180(64.77%) 0.4203(55.86%)
    下载: 导出CSV
  • [1] SABRI M F M, DANAPALASINGAM K A, RAHMAT M F. A review on hybrid electric vehicles architecture and energy management strategies[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1433-1442. doi: 10.1016/j.rser.2015.09.036
    [2] SHABBIR W. Control strategies for series hybrid electric vehicles[D]. London: Imperial College London, 2016.
    [3] 张新亮, 周童. 基于双模式优化算法的并联混合动力汽车能量管理策略研究[J]. 车用发动机, 2020(6): 48-52+59. https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD202006008.htm

    ZHANG X L, ZHOU T. Energy management strategy of parallel HEV based on dual-mode optimization algorithm[J]. Vehicle Engine, 2020(6): 48-52+59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD202006008.htm
    [4] SHABBIR W, EVANGELOU S A. Exclusive operation strategy for the supervisory control of series hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2190-2198. doi: 10.1109/TCST.2016.2520904
    [5] 金辉, 张子豪. 基于自适应动态规划的HEV能量管理研究综述[J]. 汽车工程, 2020, 42(11): 1490-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011006.htm

    JIN H, ZHANG Z H. Review of research on HEV energy management based on adaptive dynamic programming[J]. Automotive Engineering, 2020, 42(11): 1490-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011006.htm
    [6] KIM M, JUNG D, MIN K. Hybrid thermostat strategy for enhancing fuel economy of series hybrid intracity bus[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3569-3579. doi: 10.1109/TVT.2013.2290700
    [7] 胡建军, 杨颖, 邹玲菠, 等. 混合动力汽车自适应等效油耗最低能量管理策略[J]. 重庆大学学报, 2021, 44(12): 80-94. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202112007.htm

    HU J J, YANG Y, ZOU L B, et al. Adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicle[J]. Journal of Chongqing University, 2021, 44(12): 80-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202112007.htm
    [8] HOU C, OUYANG M G, XU L F, et al. Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles[J]. Applied Energy, 2014, 115: 174-189. doi: 10.1016/j.apenergy.2013.11.002
    [9] PANDAY A, BANSAL H O. Energy management strategy implementation for hybrid electric vehicles using genetic algorithm tuned Pontryagin's minimum principle controller[J]. International Journal of Vehicular Technology, 2016, 2016: 4234261.
    [10] 秦大同, 章晓星, 姚明尧. 计及能耗经济性和电池寿命的PHEV能量管理策略优化[J]. 重庆大学学报, 2020, 43(10): 1-11.

    QIN D T, ZHANG X X, YAO M Y. Optimization of PHEV energy management strategy considering battery life and energy consumption economy[J]. Journal of Chongqing University, 2020, 43(10): 1-11. (in Chinese)
    [11] DI CAIRANO S, LIANG W, KOLMANOVSKY I V, et al. Power smoothing energy management and its application to a series hybrid powertrain[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2091-2103. doi: 10.1109/TCST.2012.2218656
    [12] 季桓收. PHEV电池配置和能量管理的协同优化[J]. 汽车实用技术, 2020, 45(16): 9-10.

    JI H S. Collaborative optimization of battery configuration and energy management in PHEV[J]. Automobile Applied Technology, 2020, 45(16): 9-10. (in Chinese)
    [13] LIU T, HU X S, LI S E, et al. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1497-1507.
    [14] ZENG X R, WANG J M. A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2416-2423.
    [15] 宋文福, 于忠贵, 张志斌, 等. 增程式混合动力汽车能量管理策略研究[J]. 汽车实用技术, 2020, 45(16): 80-81+95.

    SONG W F, YU Z G, ZHANG Z B, et al. Research on energy management of range-extended electric vehicles[J]. Automobile Applied Technology, 2020, 45(16): 80-81+95. (in Chinese)
    [16] LIN C C, PENG H, GRIZZLE J W, et al. Power management strategy for a parallel hybrid electric truck[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6): 839-849.
    [17] SERRAO L, ONORI S, RIZZONI G. ECMS as a realization of Pontryagin's minimum principle for HEV control[C]//2009 American Control Conference. St. Louis: IEEE, 2009: 3964-3969.
    [18] GENG B, MILLS J K, SUN D. Energy management control of microturbine-powered plug-in hybrid electric vehicles using the telemetry equivalent consumption minimization strategy[J]. IEEE Transactions on Vehicular Technology, 2019, 60(9): 4238-4248.
    [19] 胡晓松, 陈科坪, 唐小林, 等. 基于机器学习速度预测的并联混合动力车辆能量管理研究[J]. 机械工程学报, 2020, 56(16): 181-192.

    HU X S, CHEN K P, TANG X L, et al. Machine learning velocity prediction-based energy management of parallel hybrid electric vehicle[J]. Journal of Mechanical Engineering, 2020, 56(16): 181-192. (in Chinese)
    [20] MUSARDO C, RIZZONI G, GUEZENNEC Y, et al. A-ECMS: an adaptive algorithm for hybrid electric vehicle energy management[J]. European Journal of Control, 2005, 11(4-5): 509-524.
    [21] 臧怀泉, 张琦, 强鹏辉, 等. 插电式混合动力汽车能量优化管理策略研究[J]. 燕山大学学报, 2020, 44(4): 388-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DBZX202004008.htm

    ZANG H Q, ZHANG Q, QIANG P H, et al. Research on energy optimization management strategy of plug-in hybrid electric vehicle[J]. Journal of Yanshan University, 2020, 44(4): 388-396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBZX202004008.htm
    [22] MONTAZERI-GH M, POURSAMAD A, GHALICHI B. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J]. Journal of the Franklin Institute, 2006, 343(4-5): 420-435.
    [23] JOHNSON V H, WIPKE K B, RAUSEN D J. HEV control strategy for real-time optimization of fuel economy and emissions[J]. SAE Technical Paper, 2019, 45(21): 179-184.
    [24] 耿文冉, 楼狄明, 张彤. 基于粒子群优化的混合动力汽车多目标能量管理策略[J]. 同济大学学报(自然科学版), 2020, 48(7): 1030-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202007013.htm

    GENG W R, LOU D M, ZHANG T. Multi-objective energy management strategy for hybrid electric vehicle based on particle swarm optimization[J]. Journal of Tongji University (Natural Science), 2020, 48(7): 1030-1039. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202007013.htm
    [25] DELKHOSH M, SAADAT-FOUMANI M, ROSTAMI P. Optimization of power train and control strategy of hybrid electric vehicles[J]. Scientia Iranica B, 2015, 22(5): 1842-1854.
    [26] EVANGELOU S A, SHABBIR W. Dynamic modeling platform for series hybrid electric vehicles[J]. IFAC-PapersOnLine, 2016, 49(11): 533-540.
    [27] LOT R, EVANGELOU S A. Green driving optimization of a series hybrid electric vehicle[C]//52nd IEEE Conference on Decision and Control. Firenze: IEEE, 2013: 2200-2207.
    [28] SCIARRETTA A, BACK M, GUZZELLA L. Optimal control of parallel hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 352-363.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  55
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回