留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用聚类分析的宏细观多尺度并行拓扑优化设计方法研究

舒定真 郭伟超 苏力争 任鹏飞 刘永 李言

舒定真, 郭伟超, 苏力争, 任鹏飞, 刘永, 李言. 利用聚类分析的宏细观多尺度并行拓扑优化设计方法研究[J]. 机械科学与技术, 2023, 42(4): 521-529. doi: 10.13433/j.cnki.1003-8728.20200642
引用本文: 舒定真, 郭伟超, 苏力争, 任鹏飞, 刘永, 李言. 利用聚类分析的宏细观多尺度并行拓扑优化设计方法研究[J]. 机械科学与技术, 2023, 42(4): 521-529. doi: 10.13433/j.cnki.1003-8728.20200642
SHU Dingzhen, GUO Weichao, SU Lizheng, REN Pengfei, LIU Yong, LI Yan. Investigation of Macro and Micro Multiscale Concurrent Topology Optimization Design with Cluster Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 521-529. doi: 10.13433/j.cnki.1003-8728.20200642
Citation: SHU Dingzhen, GUO Weichao, SU Lizheng, REN Pengfei, LIU Yong, LI Yan. Investigation of Macro and Micro Multiscale Concurrent Topology Optimization Design with Cluster Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 521-529. doi: 10.13433/j.cnki.1003-8728.20200642

利用聚类分析的宏细观多尺度并行拓扑优化设计方法研究

doi: 10.13433/j.cnki.1003-8728.20200642
基金项目: 

国家自然科学基金项目 51505377

中国博士后科学基金会项目 2016M592821

陕西留学人员科技活动择优项目 302/253081605

陕西省教育厅协同创新中心项目 20JY047

详细信息
    作者简介:

    舒定真(1996-), 硕士, 研究方向为结构优化设计与分析、轻量化设计, shudingzhen@foxmail.com

    通讯作者:

    郭伟超, 副教授, 硕士生导师, 博士, weichaoguo@xaut.edu.cn

  • 中图分类号: TH11

Investigation of Macro and Micro Multiscale Concurrent Topology Optimization Design with Cluster Analysis

  • 摘要: 多孔材料因为具有质量轻、比刚度和比强度大、隔振和隔热效果好等优点, 越来越多的应用在航空航天和制造装备等领域。为充分发挥多孔材料的性能, 本文提出同时考虑结构的宏观性能和细观微结构性能的多尺度并行拓扑优化设计方法, 获得性能优良的多孔结构。论文采用聚类方法有效降低了计算成本, 针对并行优化难收敛的问题提出改进模型, 使迭代平稳收敛。最后以经典的悬臂梁、MBB梁和Michell结构为例进行优化设计, 通过对宏细观多尺度并行优化结果的分析, 验证了所提方法的有效性与正确性。
  • 图  1  宏观单元密度划分

    图  2  目标函数迭代曲线

    图  3  聚类结果改进模型比较

    图  4  基于聚类的宏细观多尺度并行拓扑优化流程图

    图  5  悬臂梁结构设计域

    图  6  宏观优化及聚类结果

    图  7  非并行悬臂梁结构最优构型

    图  8  并行悬臂梁结构最优构型

    图  9  并行与非并行目标函数迭代图

    图  10  具有不同类微结构的悬臂梁最优构型

    图  11  MBB梁结构设计域

    图  12  MBB梁结构最优构型

    图  13  不同构型微结构连接示例

    图  14  MBB梁结构目标函数迭代图

    图  15  Michell结构设计域

    图  16  Michell结构最优构型

    图  17  Michell结构目标函数迭代

    表  1  非并行悬臂梁微结构优化结果

    体积百分比/% 单胞 3×3
    32
    46
    64
    100
    下载: 导出CSV

    表  2  并行悬臂梁微结构优化结果

    体积百分比/% 单胞 3×3
    28
    48
    74
    100
    下载: 导出CSV

    表  3  具有不同类微结构的悬臂梁优化结果

    聚类数ξ 目标函数 迭代步数 计算时间/s 平均每步计算时间/s
    3 39.58 328 23 898 72.86
    5 37.49 264 22 596 85.59
    7 37.93 404 43 587 107.88
    9 36.48 554 62 772 113.31
    11 36.13 522 64 305 123.19
    下载: 导出CSV

    表  4  MBB梁细观微结构优化结果

    体积百分比/% 单胞 3×3
    26
    46
    84
    100
    下载: 导出CSV

    表  5  Michell细观微结构优化结果

    体积百分比/% 单胞 3×3
    26
    46
    84
    100
    下载: 导出CSV
  • [1] SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1252-1259. doi: 10.1016/j.cja.2019.09.006
    [2] 王华敏, 秦国华, 胡政, 等. 面向加工变形控制的航空整体结构件拓扑优化设计方法[J]. 机械工程学报, 2019, 55(21): 127-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201921014.htm

    WANG H M, QIN G H, HU Z, et al. A structural topology optimal design approach to machining deformation control for aeronautical monolithic components[J]. Journal of Mechanical Engineering, 2019, 55(21): 127-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201921014.htm
    [3] 王海林, 郑锐禹, 王昱, 等. 拖拉机变速器箱体动态特性分析与优化设计[J]. 机械科学与技术, 2020, 39(11): 1685-1690. doi: 10.13433/j.cnki.1003-8728.20190322

    WANG H L, ZHENG R Y, WANG Y, et al. Dynamic characteristics analysis and optimization design of tractor transmission box[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1685-1690. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190322
    [4] CHUANG C H, CHEN S K, YANG R J, et al. Topology optimization with additive manufacturing consideration for vehicle load path development[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1434-1445. doi: 10.1002/nme.5549
    [5] PARK J, SUTRADHAR A, SHAH J J, et al. Design of complex bone internal structure using topology optimization with perimeter control[J]. Computers in Biology and Medicine, 2018, 94: 74-84. doi: 10.1016/j.compbiomed.2018.01.001
    [6] LI Q H, XU R, LIU J, et al. Topology optimization design of multi-scale structures with alterable microstructural length-width ratios[J]. Composite Structures, 2019, 230: 111454. doi: 10.1016/j.compstruct.2019.111454
    [7] KANG D, PARK S, SON Y, et al. Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process[J]. Materials & Design, 2019, 175: 107786.
    [8] XIAO L J, SONG W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments[J]. International Journal of Impact Engineering, 2018, 111: 255-272. doi: 10.1016/j.ijimpeng.2017.09.018
    [9] HABIB F N, IOVENITTI P, MASOOD S H, et al. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology[J]. Materials & Design, 2018, 155: 86-98.
    [10] SONG J, WANG Y J, ZHOU W Z, et al. Topology optimization-guided lattice composites and their mechanical characterizations[J]. Composites Part B: Engineering, 2019, 160: 402-411. doi: 10.1016/j.compositesb.2018.12.027
    [11] PIZZOLATO A, SHARMA A, MAUTE K, et al. Multi-scale topology optimization of multi-material structures with controllable geometric complexity-Applications to heat transfer problems[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112552. doi: 10.1016/j.cma.2019.07.021
    [12] CHENG L, LIU J K, LIANG X, et al. Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 408-439. doi: 10.1016/j.cma.2017.12.024
    [13] WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731-741. doi: 10.1016/j.compositesb.2019.02.011
    [14] CHATURVEDI R, TRIKHA M, SIMHA K R Y. Impact penetration through spacecraft honeycomb panels analytical, numerical and experimental study[J]. Materials Today: Proceedings, 2020, 21: 1050-1058. doi: 10.1016/j.matpr.2020.01.004
    [15] YIN H F, HUANG X F, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs[J]. Composite Structures, 2018, 192: 516-527. doi: 10.1016/j.compstruct.2018.03.050
    [16] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.

    REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687. (in Chinese)
    [17] GAO J, LI H, GAO L, et al. Topological shape optimiza-tion of 3D micro-structured materials using energy-based homogenization method[J]. Advances in Engineering Software, 2018, 116: 89-102. doi: 10.1016/j.advengsoft.2017.12.002
    [18] ZHOU S W, LI Q. Computational design of multi-phase microstructural materials for extremal conductivity[J]. Computational Materials Science, 2008, 43(3): 549-564. doi: 10.1016/j.commatsci.2007.12.021
    [19] WANG Y Q, ZHANG L, DAYNES S, et al. Design of graded lattice structure with optimized mesostructures for additive manufacturing[J]. Materials & Design, 2018, 142: 114-123.
    [20] WANG Y Q, CHEN F F, WANG M Y. Concurrent design with connectable graded microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 84-101. doi: 10.1016/j.cma.2016.12.007
    [21] GAO J, LUO Z, LI H, et al. Topology optimization for multiscale design of porous composites with multi-domain microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 451-476. doi: 10.1016/j.cma.2018.10.017
    [22] GAO J, LUO Z, LI H, et al. Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites[J]. Composite Structures, 2019, 211: 401-417. doi: 10.1016/j.compstruct.2018.12.031
    [23] 杜义贤, 尹鹏, 李荣, 等. 兼具吸能和承载特性的梯度结构宏细观跨尺度拓扑优化设计[J]. 机械工程学报, 2020, 56(7): 171-180.

    DU Y X, YIN P, LI R, et al. Macro and micro trans-scale topological optimization design of gradient structure with both energy absorption and load-bearing characteristics[J]. Journal of Mechanical Engineering, 2020, 56(7): 171-180. (in Chinese)
    [24] LIU K, DETWILER D, TOVAR A. Cluster-based optimization of cellular materials and structures for crashworthiness[J]. Journal of Mechanical Design, 2018, 140(11): 111412. doi: 10.1115/1.4040960
    [25] KUMAR T, SURESH K. A density-and-strain-based K-clustering approach to microstructural topology optimization[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1399-1415. doi: 10.1007/s00158-019-02422-4
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  61
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回