留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

约束型粒子群的LCC/S磁谐振耦合机构参数优化算法

吴晓伟 刘宏昭

吴晓伟, 刘宏昭. 约束型粒子群的LCC/S磁谐振耦合机构参数优化算法[J]. 机械科学与技术, 2022, 41(1): 127-133. doi: 10.13433/j.cnki.1003-8728.20200640
引用本文: 吴晓伟, 刘宏昭. 约束型粒子群的LCC/S磁谐振耦合机构参数优化算法[J]. 机械科学与技术, 2022, 41(1): 127-133. doi: 10.13433/j.cnki.1003-8728.20200640
WU Xiaowei, LIU Hongzhao. Parameter Optimization of LCC/S Type Magnetic Resonance Coupling Mechanism with Constrained Particle Swarm Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 127-133. doi: 10.13433/j.cnki.1003-8728.20200640
Citation: WU Xiaowei, LIU Hongzhao. Parameter Optimization of LCC/S Type Magnetic Resonance Coupling Mechanism with Constrained Particle Swarm Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 127-133. doi: 10.13433/j.cnki.1003-8728.20200640

约束型粒子群的LCC/S磁谐振耦合机构参数优化算法

doi: 10.13433/j.cnki.1003-8728.20200640
详细信息
    作者简介:

    吴晓伟(1985-), 博士研究生, 研究方向为电磁仿真, 无线电能传输技术, xuexitouch@163.com

    通讯作者:

    刘宏昭, 教授, 博士, liu-hongzhao@163.com

  • 中图分类号: TM724

Parameter Optimization of LCC/S Type Magnetic Resonance Coupling Mechanism with Constrained Particle Swarm Algorithm

  • 摘要: 针对移动监测型传感器种类不同且位置可变的特性, 确定LCC/S磁谐振耦合机构工作模式。由于该型无线电能传输系统谐振补偿拓扑参数配置困难, 使得系统难以同时兼顾输出效率与输出功率, 提出一种以系统传输效率为目标函数, 以传感器移动范围内所需功率为限制条件的约束模型; 然后引入罚函数将约束模型转化为无约束模型, 通过粒子群算法进行参数优化, 使得系统在满足传感器所需功率的同时传输效率最大化。最后通过仿真验证了所提优化方法的有效性。
  • 图  1  无线供电监测传感器示意

    图  2  LCC/S型WPT系统

    图  3  线圈相对位置

    图  4  LCC/S磁耦合机构等效模型

    图  5  Rx=50 Ω机构输入阻抗

    图  6  k=0.1机构输入阻抗

    图  7  RL=50 Ω机构输出能效

    图  8  优化算法流程

    图  9  线圈尺寸及相对位置

    图  10  输出能效曲线

    图  11  CPSO参数仿真

    图  12  PSO参数仿真

    图  13  线圈能量耦合示意

    表  1  LCC/S谐振补偿参数

    参数 数值
    电感L1/μH 441.52
    电容C1/nF 7.94
    电感L2/μH 883.03
    电容C2/nF 7.94
    电感L3/μH 883.03
    电容C3/nF 3.97
    下载: 导出CSV

    表  2  LCC/S磁耦合机构优化参数

    特性 电感L1/μH 电容C1/nF 电容C2/nF 电容C3/nF
    有约束 0.075 1351 17.357 17
    无约束 0.1103 962.74 17.45 4.28
    下载: 导出CSV
  • [1] 刘艳梨, 程世利, 蒋素荣, 等. 带位移传感器的6-UPS并联机构运动学正解[J]. 机械工程学报, 2018, 54(5): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201805001.htm

    LIU Y L, CHENG S L, JIANG S R, et al. Forward kinematics of 6-UPS parallel manipulators with one displacement sensor[J]. Journal of Mechanical Engineering, 2018, 54(5): 1-7 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201805001.htm
    [2] 孙英, 张耀松, 陈铮, 等. 磁致伸缩位移传感器反射波电压特性与阻尼参数优化[J]. 农业机械学报, 2021, 52(5): 412-419 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202105046.htm

    SUN Y, ZHANG Y S, CHEN Z, et al. Voltage characteristics of reflected wave of magnetostrictive displacement sensor and damping parameter selection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 412-419 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202105046.htm
    [3] 余刃, 谢旭阳, 秦法涛, 等. 一种用于旋转设备运行状态无线监测的智能无线振动传感器设计[J]. 核动力工程, 2020, 41(3): 221-226 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG202003042.htm

    YU R, XIE X Y, QING F T, et al. Design of intelligent wireless vibration sensor for wireless monitoring of rotating device operating condition[J]. Nuclear Power Engineering, 2020, 41(3): 221-226 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG202003042.htm
    [4] SHINOHARA N. Trends in wireless power transfer: WPT technology for energy harvesting, Mllimeter-Wave/THz Rectennas, MIMO-WPT, and advances in near-field WPT applications[J]. IEEE Microwave Magazine, 2021, 22(1): 46-59 doi: 10.1109/MMM.2020.3027935
    [5] 侯满哲, 马宏, 贾方健, 等. 一种新的电动汽车感应电能传输系统设计方法[J]. 机械科学与技术, 2017, 36(9): 1447-1451 doi: 10.13433/j.cnki.1003-8728.2017.0922

    HOU M Z, MA H, JIA F J, et al. A new design method for inductive power transfer system of electric vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1447-1451 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0922
    [6] 田勇, 朱泽, 田劲东, 等. 基于LCC-S补偿的电动汽车动态无线充电系统拓扑参数优化[J]. 机械工程报, 2021, 57(14): 150-159 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202114014.htm

    TIAN Y, ZHU Z, TIAN J D, et al. Parameters optimization of electric vehicles dynamic wireless power transfer system based on LCC-S compensation topology[J]. Journal of Mechanical Engineering, 2021, 57(14): 150-159 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202114014.htm
    [7] 谢鸥, 李华, 曹洋, 等. 旋转超声振动加工中非接触电能传输特性研究[J]. 机械科学与技术, 2017, 36(5): 736-740 doi: 10.13433/j.cnki.1003-8728.2017.0513

    XIE O, LI H, CAO Y, et al. Study on contactless power transmission characteristic in rotary ultrasonic vibration machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 736-740 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0513
    [8] 李争, 张瀚明. 多自由度电机双接收端无线电能传输研究[J]. 电力电子技术, 2020, 54(10): 121-124 doi: 10.3969/j.issn.1000-100X.2020.10.033

    LI Z, ZHANG H M. Design and analysis of wireless power transmission of multi-degree-of-freedom motor with two receivers[J]. Power Electronics, 2020, 54(10): 121-124 (in Chinese) doi: 10.3969/j.issn.1000-100X.2020.10.033
    [9] ZHANG W, MI C C. Compensation topologies of high-power wireless power transfer systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4768-4778 doi: 10.1109/TVT.2015.2454292
    [10] QU X H, JING Y Y, HAN H D, et al. Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 394-405 doi: 10.1109/TPEL.2016.2535376
    [11] 吉莉, 王丽芳, 廖承林, 等. 基于LCL谐振补偿网络的副边自动切换充电模式无线电能传输系统研究与设计[J]. 电工技术学报, 2018, 33(S1): 34-40 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2018S1005.htm

    JI L, WANG L F, LIAO C L, et al. Research and design of automatic alteration between constant current mode and constant voltage mode at the secondary side based on LCL compensation network in wireless power tranfer systems[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 34-40 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2018S1005.htm
    [12] HUA C C, FANG Y H, LIN C W. LLC resonant converter for electric vehicle battery chargers[J]. IET Power Electronics, 2016, 9(12): 2369-2376 doi: 10.1049/iet-pel.2016.0066
    [13] 赵鱼名, 王智慧, 苏玉刚, 等. 基于T型CLC谐振网络的恒压型电场耦合电能传输系统负载自适应技术[J]. 电工技术学报, 2020, 35(1): 106-114 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202001012.htm

    ZHAO Y M, WANG Z H, SU Y G, et al. Load adaptive technology of constant voltage electric-field coupled power transfer system based on T-CLC resonant network[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 106-114 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202001012.htm
    [14] QI J J. Analysis, design, and optimisation of an LCC/S compensated WPT system featured with wide operation range[J]. IET Power Electronics, 2020, 13(9): 1819-1827 doi: 10.1049/iet-pel.2019.1305
    [15] 孙跃, 夏晨阳, 戴欣, 等. 感应耦合电能传输系统互感耦合参数的分析与优化[J]. 中国电机工程学报, 2010, 30(33): 44-50 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201033008.htm

    SUN Y, XIA C Y, DAI X, et al. Analysis and optimization of mutual inductance for inductively coupled power transfer system[J]. Proceedings of the CSEE, 2010, 30(33): 44-50 (in Chines) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201033008.htm
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  30
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回