留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究

杨云 丁磊 张昊宇

杨云, 丁磊, 张昊宇. 改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究[J]. 机械科学与技术, 2023, 42(4): 538-545. doi: 10.13433/j.cnki.1003-8728.20200638
引用本文: 杨云, 丁磊, 张昊宇. 改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究[J]. 机械科学与技术, 2023, 42(4): 538-545. doi: 10.13433/j.cnki.1003-8728.20200638
YANG Yun, DING Lei, ZHANG Haoyu. Research on Bearing Fault Diagnosis of Improved One-dimensional Convolutional Neural Network and Bidirectional Gated Recurrent Unit[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 538-545. doi: 10.13433/j.cnki.1003-8728.20200638
Citation: YANG Yun, DING Lei, ZHANG Haoyu. Research on Bearing Fault Diagnosis of Improved One-dimensional Convolutional Neural Network and Bidirectional Gated Recurrent Unit[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 538-545. doi: 10.13433/j.cnki.1003-8728.20200638

改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究

doi: 10.13433/j.cnki.1003-8728.20200638
基金项目: 

江西省重点研发计划项目 20202BBEL53008

详细信息
    作者简介:

    杨云(1972-), 高级实验师, 研究方向为故障诊断、检测技术及自动化, yyang@ecjtu.edu.cn

  • 中图分类号: TH133.33;TH165.3

Research on Bearing Fault Diagnosis of Improved One-dimensional Convolutional Neural Network and Bidirectional Gated Recurrent Unit

  • 摘要: 针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点, 提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先, 该方法利用一维卷积神经网络自提取能力进行特征提取, 同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层, 减少参数数量; 其次, 引入双向门控循环单元学习特征信号中的时间序列关系; 最后, 通过支持向量机替换传统CNN中的Softmax层进行故障分类, 进一步提高诊断的准确率。实验表明, 该方法将诊断的准确率提升至99.8%, 并且加快了诊断的速度。通过与其他方法的对比, 证明了该方法有着更高的准确率, 更快的诊断速度, 更好的鲁棒性。
  • 图  1  卷积神经网络基本结构

    图  2  GRU结构图

    图  3  BiGRU结构图

    图  4  改进1DCNN-BiGRU-SVM模型结构图

    图  5  故障诊断流程图

    图  6  滚动轴承实验台

    图  7  训练集和验证集损失曲线

    图  8  测试集和验证集准确率曲线

    图  9  故障诊断多分类混淆矩阵

    图  10  准确率对比曲线

    图  11  损失率对比曲线

    图  12  t-SNE降维可视化

    图  13  不同模型在不同负载下故障诊断结果

    表  1  滚动轴承故障数据集

    故障类型 训练集 验证集 测试集 标签
    滚动体 700 200 100 1
    0.007/inch 内圈故障 700 200 100 2
    外圈故障 700 200 100 3
    滚动体 700 200 100 4
    0.014/inch 内圈故障 700 200 100 5
    外圈故障 700 200 100 6
    0.021 /inch 滚动体 700 200 100 7
    内圈故障 700 200 100 8
    外圈故障 700 200 100 9
    正常 700 200 100 0
    下载: 导出CSV

    表  2  改进1DCNN-BiGRU-SVM模型诊断结果

    故障序号 精确率 召回率 F1调和均值 样本
    0 1.00 1.00 1.00 100
    1 1.00 1.00 1.00 100
    2 1.00 1.00 1.00 100
    3 1.00 0.98 0.99 100
    4 1.00 1.00 1.00 100
    5 0.98 1.00 0.99 100
    6 1.00 1.00 1.00 100
    7 1.00 1.00 1.00 100
    8 1.00 1.00 1.00 100
    9 1.00 1.00 1.00 100
    平均值/总数 0.998 0.998 0.998 1 000
    下载: 导出CSV

    表  3  模型参数数量与诊断结果

    名称 改进
    1DCNN-BiGRU-SVM
    传统
    1DCNN-BiGRU-Softmax
    Conv1d 51 300 51 300
    batch 400 400
    max pooling 0 0
    dropout 0 0
    Conv1d 20 100 20 100
    batch 400 400
    max pooling 0 0
    dropout 0 0
    flatten 0 0
    reshape 0 0
    BiGRU 1 872 1 872
    activation 0 0
    Global maxpool 0 -
    dense - 1 400
    activation 0 0
    dense 70 2 010
    SVM 0 -
    Softmax - 0
    总数 74 142 77 482
    准确率 0.998 0.986
    诊断时间/s 57.002 243 72.002 416
    下载: 导出CSV

    表  4  不同模型在不同负载下故障诊断结果

    名称 0 kW 0.735 kW 1.470 kW 2.205 kW
    SVM 0.708 0.729 0.736 0.722
    VMD排列熵+SVM 0.962 0.958 0.947 0.973
    传统1DCNN 0.947 0.953 0.943 0.964
    传统
    1DCNN-BiGRU-Softmax
    0.974 0.987 0.979 0.984
    改进
    1DCNN-BiGRU-SVM
    0.996 0.992 0.994 0.998
    下载: 导出CSV
  • [1] XIA M, LI T, XU L, et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 101-110. doi: 10.1109/TMECH.2017.2728371
    [2] 肖雄, 肖宇雄, 张勇军, 等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41(2): 738-748. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202102032.htm

    XIAO X, XIAO Y X, ZHANG Y J, et al. Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE, 2021, 41(2): 738-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202102032.htm
    [3] SHAO H D, JIANG H K, LIN Y, et al. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. doi: 10.1016/j.ymssp.2017.09.026
    [4] 杨慧斌. 滚动轴承故障诊断中的特征提取与选择方法[D]. 株洲: 湖南工业大学, 2011.

    YANG H B. Features extraction and selection in rolling bearing fault diagnosis[D]. Zhuzhou: Hunan University of Technology, 2011. (in Chinese)
    [5] QU J X, ZHANG Z S, GONG T. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J]. Neurocomputing, 2016, 171: 837-853. doi: 10.1016/j.neucom.2015.07.020
    [6] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201819021.htm

    LI H, ZHANG Q, QIN X R, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201819021.htm
    [7] 徐可, 陈宗海, 张陈斌, 等. 基于经验模态分解和支持向量机的滚动轴承故障诊断[J]. 控制理论与应用, 2019, 36(6): 915-922. doi: 10.7641/CTA.2018.80257

    XU K, CHEN Z H, ZHANG C B, et al. Rolling bearing fault diagnosis based on empirical mode decomposition and support vector machine[J]. Control Theory & Applications, 2019, 36(6): 915-922. (in Chinese) doi: 10.7641/CTA.2018.80257
    [8] VERSTRAETE D, FERRADA A, DROGUETT E L, et al. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings[J]. Shock and Vibration, 2017, 2017: 5067651.
    [9] HARMOUCHE J, DELPHA C, DIALLO D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part Ⅱ[J]. Signal Processing, 2015, 109: 334-344. doi: 10.1016/j.sigpro.2014.06.023
    [10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
    [11] CHENG J, WANG P S, LI G, et al. Recent advances in efficient computation of deep convolutional neural networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 64-77.
    [12] 宫文峰, 陈辉, 张泽辉, 等. 基于改进卷积神经网络的滚动轴承智能故障诊断研究[J]. 振动工程学报, 2020, 33(2): 400-413. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202002021.htm

    GONG W F, CHEN H, ZHANG Z H, et al. Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network[J]. Journal of Vibration Engineering, 2020, 33(2): 400-413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202002021.htm
    [13] 孙洁娣, 毛新茹, 温江涛, 等. 深度卷积长短期记忆网络的轴承故障诊断[J]. 机械科学与技术, 2021, 40(7): 1091-1099. doi: 10.13433/j.cnki.1003-8728.20200170

    SUN J D, MAO X R, WEN J T, et al. Bearing fault diagnosis using deep CNN and LSTM[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1091-1099. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200170
    [14] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. https://www.sciencedirect.com/science/article/pii/S0031320317304120
    [15] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6+26.

    YANG L, WU Y Q, WANG J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2): 1-6+26. (in Chinese)
    [16] 魏永合, 王明华. 基于EEMD和SVM的滚动轴承退化状态识别[J]. 计算机集成制造系统, 2015, 21(9): 2475-2483. doi: 10.13196/j.cims.2015.09.024

    WEI Y H, WANG M H. Degradation state recognition of rolling bearing based on EEMD and SVM[J]. Computer Integrated Manufacturing Systems, 2015, 21(9): 2475-2483. (in Chinese) doi: 10.13196/j.cims.2015.09.024
    [17] SUN W Q, ZHAO R, YAN R Q, et al. Convolutional discriminative feature learning for induction motor fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1350-1359. https://ieeexplore.ieee.org/document/7862893
    [18] 宫文峰, 陈辉, WANG D W, 等. 基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法[J]. 计算机集成制造系统, 2022, 28(5): 1370-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202205009.htm

    GONG W F, CHEN H, WANG D W, et al. Fast fault diagnosis method of marine electrical converter based on improved CNN-GAP-SVM algorithn[J]. Computer Integrated Manufacturing Systems, 2022, 28(5): 1370-1384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202205009.htm
    [19] 葛阳, 郭兰中, 牛曙光, 等. 基于t-SNE和LSTM的旋转机械剩余寿命预测[J]. 振动与冲击, 2020, 39(7): 223-231+273.

    GE Y, GUO L Z, NIU S G, et al. Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery[J]. Journal of Vibration and Shock, 2020, 39(7): 223-231+273. (in Chinese)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  120
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回