留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

OpenSim对跳跃动作上下肢肌肉协调性的仿真分析

闫慧云 邓云锋 杨威 柏开祥

闫慧云, 邓云锋, 杨威, 柏开祥. OpenSim对跳跃动作上下肢肌肉协调性的仿真分析[J]. 机械科学与技术, 2023, 42(4): 573-579. doi: 10.13433/j.cnki.1003-8728.20200636
引用本文: 闫慧云, 邓云锋, 杨威, 柏开祥. OpenSim对跳跃动作上下肢肌肉协调性的仿真分析[J]. 机械科学与技术, 2023, 42(4): 573-579. doi: 10.13433/j.cnki.1003-8728.20200636
YAN Huiyun, DENG Yunfeng, YANG Wei, BAI Kaixiang. OpenSim Simulation Analysis of Muscle Coordination of Jumping Upper and Lower Limbs[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 573-579. doi: 10.13433/j.cnki.1003-8728.20200636
Citation: YAN Huiyun, DENG Yunfeng, YANG Wei, BAI Kaixiang. OpenSim Simulation Analysis of Muscle Coordination of Jumping Upper and Lower Limbs[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 573-579. doi: 10.13433/j.cnki.1003-8728.20200636

OpenSim对跳跃动作上下肢肌肉协调性的仿真分析

doi: 10.13433/j.cnki.1003-8728.20200636
基金项目: 

国家重点研发计划项目 2018YFF0300404

详细信息
    作者简介:

    闫慧云(1997-), 硕士研究生, 研究方向为运动生物力学, 595145239@qq.com

    通讯作者:

    柏开祥, 教授, 硕士生导师, 382641388@qq.com

  • 中图分类号: G804.66

OpenSim Simulation Analysis of Muscle Coordination of Jumping Upper and Lower Limbs

  • 摘要: 本文基于OpenSim建立了一个包括上下肢在内的人体整体骨骼肌肉仿真模型,通过Vicon红外摄像系统、Kistler三维测力平台以及遥测肌电对摆臂与背手两种原地纵跳动作进行同步测试,并结合逆运动学、逆动力学等仿真工具寻求上下肢肌肉协调工作提升原地纵跳动作效果的实证。结果表明:本文所建立的人体整体肌肉骨骼仿真模型具有高度可靠性,分析得出摆臂原地纵跳动作中三角肌前束对重心的提高贡献最大。研究结果可为将来上下肢助力外骨骼的设计与研究提供帮助。
  • 图  1  摆臂原地纵跳动作示意图

    图  2  背手原地纵跳动作示意图

    图  3  全身跳跃模型及坐标系

    图  4  残差计算右侧关节角度与实际关节角度比较

    图  5  OpenSim仿真静态优化计算肌肉激活与EMG信号比较

    图  6  摆臂与背手跳跃模式重心高度变化曲线

    图  7  右侧膝关节运动学

    图  8  两种不同起跳模式的GRF对比

    图  9  摆臂模式单侧GRF提供的加速度与单侧手臂主动肌诱导加速度情况

    表  1  残差分析全模型力与力矩的最大残差值

    FX/N FY/N FZ/N MX/Nm MY/Nm MZ/Nm
    6.436 78 20.721 1 5.663 6 34.153 0.380 962 10.386 1
    下载: 导出CSV
  • [1] AKL A R. A biomechanical comparison of different vertical jump techniques with and without arm swing[J]. International Journal of Sports and Physical Education, 2015, 1(1): 14-22.
    [2] HARA M, SHIBAYAMA A, TAKESHITA D, et al. A comparison of the mechanical effect of arm swing and countermovement on the lower extremities in vertical jumping[J]. Human Movement Science, 2008, 27(4): 636-648. doi: 10.1016/j.humov.2008.04.001
    [3] COLLINS S H, ADAMCZYK P G, KUO A D. Dynamic arm swinging in human walking[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1673): 3679-3688. doi: 10.1098/rspb.2009.0664
    [4] UMBERGER B R. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking[J]. Journal of Biomechanics, 2008, 41(11): 2575-2580. doi: 10.1016/j.jbiomech.2008.05.024
    [5] BRUIJN S M, MEIJER O G, BEEK P J, et al. The effects of arm swing on human gait stability[J]. Journal of Experimental Biology, 2010, 213(Pt 23): 3945-3952.
    [6] PONTZER H, HOLLOWAY IV J H, RAICHLEN D A, et al. Control and function of arm swing in human walking and running[J]. Journal of Experimental Biology, 2009, 212(4): 523-534. doi: 10.1242/jeb.024927
    [7] WEINHANDL J T, BENNETT H J. Musculoskeletal model choice influences hip joint load estimations during gait[J]. Journal of Biomechanics, 2019, 91: 124-132. doi: 10.1016/j.jbiomech.2019.05.015
    [8] FALISSE A, VAN ROSSOM S, GIJSBERS J, et al. Opensim versus human body model: a comparison study for the lower limbs during gait[J]. Journal of Applied Biomechanics, 2018, 34(6): 496-502. doi: 10.1123/jab.2017-0156
    [9] DAVICO G, PIZZOLATO C, KILLEN B A, et al. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling[J]. Biomechanics and Modeling in Mechanobiology, 2020, 19(4): 1225-1238. doi: 10.1007/s10237-019-01245-y
    [10] ROELKER S A, CARUTHERS E J, HALL R K, et al. Effects of optimization technique on simulated muscle activations and forces[J]. Journal of Applied Biomechanics, 2020, 36(4): 259-278. doi: 10.1123/jab.2018-0332
    [11] TRINLER U, BAKER R. Estimated landmark calibration of biomechanical models for inverse kinematics[J]. Medical Engineering & Physics, 2018, 51: 79-83.
    [12] ANDERSON F C, PANDY M G. Dynamic optimization of human walking[J]. Journal of Biomechanical Engineering, 2001, 123(5): 381-390. doi: 10.1115/1.1392310
    [13] HAMNER S R, SETH A, DELP S L. Muscle contribut- ions to propulsion and support during running[J]. Journal of Biomechanics, 2010, 43(14): 2709-2716. doi: 10.1016/j.jbiomech.2010.06.025
    [14] SETH A, HICKS J L, UCHIDA T K, et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement[J]. PLoS Computational Biology, 2018, 14(7): e1006223. doi: 10.1371/journal.pcbi.1006223
    [15] MOGK J P M, JOHANSON M E, HENTZ V R, et al. A simulation analysis of the combined effects of muscle strength and surgical tensioning on lateral pinch force following brachioradialis to flexor pollicis longus transfer[J]. Journal of Biomechanics, 2011, 44(4): 669-675. doi: 10.1016/j.jbiomech.2010.11.004
    [16] 赵闯, 蔡玉强. 基于OpenSim人体步行腓肠肌静态生物力学分析[J]. 科学技术与工程, 2020, 20(7): 2604-2608. doi: 10.3969/j.issn.1671-1815.2020.07.011

    ZHAO C, CAI Y Q. Static biomechanical analysis of human walking gastrocnemius muscle based on OpenSim[J]. Science Technology and Engineering, 2020, 20(7): 2604-2608. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.07.011
    [17] 梅齐昌, 顾耀东, 孙冬, 等. 基于影像学构建个体化OpenSim下肢肌骨模型的生物力学研究应用进展[J]. 医用生物力学, 2020, 35(2): 259-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202002021.htm

    MEI Q C, GU Y D, SUN D, et al. Progress on biomechanical research of image-based subject-specific OpenSim lower extremity musculoskeletal model[J]. Journal of Medical Biomechanics, 2020, 35(2): 259-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202002021.htm
    [18] FALISSE A, SERRANCOLI G, DEMBIA C L, et al. Algorithmic differentiation improves the computational efficiency of OpenSim-based trajectory optimization of human movement[J]. PLoS One, 2019, 14(10): e0217730. doi: 10.1371/journal.pone.0217730
    [19] 黄尚军, 伍勰, 阮棉芳, 等. 4种算法评估落地动作中ACL负荷的对比研究[J]. 体育科学, 2018, 38(3): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TYKX201803009.htm

    HUANG S J, WU X, RUAN M F, et al. Comparative study on four calculation methods of ACL load evaluation during landing[J]. China Sport Science, 2018, 38(3): 73-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYKX201803009.htm
    [20] STEELE K M, SETH A, HICKS J L, et al. Muscle contributions to support and progression during single-limb stance in crouch gait[J]. Journal of Biomechanics, 2010, 43(11): 2099-2105. doi: 10.1016/j.jbiomech.2010.04.003
    [21] SETH A, DONG M L, MATIAS R, et al. Muscle contributions to upper-extremity movement and work from a musculoskeletal model of the human shoulder[J]. Frontiers in Neurorobotics, 2019, 13: 90. doi: 10.3389/fnbot.2019.00090
    [22] 王艳蕾, 范田依, 宋鹏杰, 等. 高频超声联合肌电图在腕部正中神经受压诊断中的应用价值[J]. 卒中与神经疾病, 2019, 26(2): 198-201+205.

    WANG Y L, FAN T Y, SONG P J, et al. The value of high-frequency ultrasound combined with electromyography in the diagnosis of wrist median nerve[J]. Stroke and Nervous Diseases, 2019, 26(2): 198-201+205. (in Chinese)
    [23] RAABE M E, CHAUDHARI A M W. An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation[J]. Journal of Biomechanics, 2016, 49(7): 1238-1243.
    [24] 郭超, 何育民, 孙朝阳, 等. OpenSim环境下人体下肢行走生物力学特性研究[J]. 机械科学与技术, 2021, 40(9): 1355-1360. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202109007.htm

    GUO C, HE Y M, SUN Z Y, et al. Exploring biomechanical characteristics of human lower limb walk using the OpenSim software[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1355-1360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202109007.htm
    [25] AKL A R I, DOMA M M. Biomechanical indicators of jump height among varied techniques of vertical jump[J]. American Journal of Sports Science, 2016, 4(5): 77-83.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  212
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回