留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双腔室自振脉冲喷嘴空化射流数值模拟

于海涛 徐艳 刘海水 王佳祥

于海涛, 徐艳, 刘海水, 王佳祥. 双腔室自振脉冲喷嘴空化射流数值模拟[J]. 机械科学与技术, 2023, 42(4): 585-591. doi: 10.13433/j.cnki.1003-8728.20200630
引用本文: 于海涛, 徐艳, 刘海水, 王佳祥. 双腔室自振脉冲喷嘴空化射流数值模拟[J]. 机械科学与技术, 2023, 42(4): 585-591. doi: 10.13433/j.cnki.1003-8728.20200630
YU Haitao, XU Yan, LIU Haishui, WANG Jiaxiang. Study on Numerical Simulation of Cavitation Jet Flow for Two-chamber Self-vibrating Pulse Nozzles[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 585-591. doi: 10.13433/j.cnki.1003-8728.20200630
Citation: YU Haitao, XU Yan, LIU Haishui, WANG Jiaxiang. Study on Numerical Simulation of Cavitation Jet Flow for Two-chamber Self-vibrating Pulse Nozzles[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 585-591. doi: 10.13433/j.cnki.1003-8728.20200630

双腔室自振脉冲喷嘴空化射流数值模拟

doi: 10.13433/j.cnki.1003-8728.20200630
基金项目: 

黑龙江省青年科学基金项目 QC2016003

详细信息
    作者简介:

    于海涛(1993-), 硕士研究生, 研究方向为空化水射流技术, 1002015196@qq.com

    通讯作者:

    徐艳, 教授, 博士生导师, 博士, zhfxuyan@163.com

  • 中图分类号: TP69

Study on Numerical Simulation of Cavitation Jet Flow for Two-chamber Self-vibrating Pulse Nozzles

  • 摘要: 以风琴管喷嘴为基础,串联一个谐振腔形成双腔室自激振荡脉冲喷嘴,利用Fluent对其流场进行数值模拟,分析射流靶距、二级谐振腔腔长比、腔径比的变化对空化射流流场的影响。结果表明:谐振腔尺寸过大或过小均会影响涡环结构的形成,进而影响空化效果。当谐振腔腔长比为0.77、腔径比为2.6时,谐振腔内涡环结构对称性好,轴向含气率高,射流速度较高,该结构利于清洗效率的提高。靶面滞止压力可对空化效果产生影响。当射流靶距较小时,在滞止压力的作用下二级谐振腔无涡环结构产生,轴向含气率较低。当靶距增加到18 mm时滞止压力产生的影响减小,轴向含气率明显提高,因此清洗靶距应至少为18 mm。但靶距的增加会降低射流到达靶面的动能,因此最佳靶距应取18 mm。
  • 图  1  喷嘴二维示意图

    图  2  计算域网格划分

    图  3  腔长比X不同时的流线图

    图  4  喷嘴轴向含气率分布图

    图  5  腔径比Y不同时的流线图

    图  6  喷嘴轴向含气率分布图

    图  7  不同靶距的流线图

    图  8  喷嘴轴向含气率分布图

    图  9  壁面滞止压力分布图

    图  10  不同靶距的静压分布云图

  • [1] JOHNSON V E JR, KOHL R E, THIRUVENGADAM A, et al. Tunnelling, fracturing, drilling, and mining with high speed water jets utilizing cavitation damage[C]//Proceedings of the 1st International Symposium on Jet Cutting Technology. Coventry. England: University of Warwick, 1972: A3-37.
    [2] 李根生, 沈忠厚, 周长山, 等. 自振空化射流研究与应用进展[J]. 中国工程科学, 2005, 7(1): 27-32. doi: 10.3969/j.issn.1009-1742.2005.01.005

    LI G S, SHEN Z H, ZHOU C S, et al. Advances in investigation and application of self-resonating cavitating water jet[J]. Engineering Science, 2005, 7(1): 27-32. (in Chinese) doi: 10.3969/j.issn.1009-1742.2005.01.005
    [3] 李伟, 张文全, 施卫东, 等. 缩放型喷嘴空化射流空泡云演化规律的试验研究[J]. 排灌机械工程学报, 2020, 38(6): 547-552. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202006003.htm

    LI W, ZHANG W Q, SHI W D, et al. Experimental study on cavitation cloud evolution law of cavitation jet of convergent-divergent nozzle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 547-552. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202006003.htm
    [4] 李敬彬, 黄中伟, 魏秀丽, 等. 井底围压对高压水射流的影响规律研究[J]. 石油机械, 2021, 49(4): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI202104003.htm

    LI J B, HUANG Z W, WEI X L, et al. Study on the influence of bottom hole confining pressure on high-pressure jetting techniques[J]. China Petroleum Machinery, 2021, 49(4): 18-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI202104003.htm
    [5] 奉虎, 杨永印, 王艳涛, 等. 低压缩扩形喷嘴空化射流数值模拟及试验研究[J]. 石油机械, 2018, 46(4): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201804010.htm

    FENG H, YANG Y Y, WANG Y T, et al. Numerical simulation and experimental study on cavitation jet of low-pressure converging expanding nozzle[J]. China Petroleum Machinery, 2018, 46(4): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201804010.htm
    [6] YANG Y F, LI W, SHI W D, et al. Experimental study on submerged high-pressure jet and parameter optimization for cavitation peening[J]. Mechanika, 2020, 26(4): 346-353. doi: 10.5755/j01.mech.26.4.27560
    [7] LIU B S, MA F. Erosion characteristics and the corresponding self-resonating oscillations of cavitating jet on oblique surfaces[J]. Energies, 2020, 13(10): 2563. doi: 10.3390/en13102563
    [8] 张坤, 陈颂英. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.

    ZHANG K, CHEN S Y. Numerical simulation of self-excited pulsed cavitation nozzle in three-dimensional unsteady flow[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(4): 288-293. (in Chinese)
    [9] FUJISAWA N, HORIUCHI T, FUJISAWA K, et al. Experimental observation of the erosion pattern, pits, and shockwave formation in a cavitating jet[J]. Wear, 2019, 418-419: 265-272. doi: 10.1016/j.wear.2018.10.014
    [10] 王萍辉, 马飞. 自激振动空化射流振动分析试验[J]. 机械工程学报, 2009, 45(10): 89-95.

    WANG P H, MA F. Vibration analysis experiment of self-resonating cavitating water jet[J]. Journal of Mechanical Engineering, 2009, 45(10): 89-95. (in Chinese)
    [11] 李根生, 沈忠厚. 风琴管自振空化喷嘴的设计原理[J]. 石油大学学报(自然科学版), 1992, 16(5): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX199205006.htm

    LI G S, SHEN Z H. Design principle of organ-pipe cavitating jet nozzles[J]. Journal of the University of Petroleum, China, 1992, 16(5): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX199205006.htm
    [12] 戚美, 王立夫, 陈庆光, 等. 双腔室自激振荡脉冲喷嘴空化射流的数值模拟[J]. 排灌机械工程学报, 2020, 38(5): 457-461. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202005006.htm

    QI M, WANG L F, CHEN Q G, et al. Numerical simulation of cavitating jet in dual chamber self-oscillation pulse nozzle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 457-461. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX202005006.htm
    [13] 邓嵘, 李向东, 丰波. 双腔室自振脉冲喷嘴数值分析与实验研究[J]. 机械科学与技术, 2017, 36(12): 1816-1822.

    DENG R, LI X D, FENG B. Numerical analysis and experimental research of a dual chamber self-excited oscillation pulsed jet nozzle[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(12): 1816-1822. (in Chinese)
    [14] 蔡腾飞, 潘岩, 马飞, 等. 喷嘴出口结构参数对风琴管射流空化作用的影响[J]. 机械工程学报, 2019, 55(18): 150-156.

    CAI T F, PAN Y, MA F, et al. Effects of outlet geometry of organ-pipe nozzle on cavitation due to impingement of the waterjet[J]. Journal of Mechanical Engineering, 2019, 55(18): 150-156. (in Chinese)
    [15] 唐川林, 吴霞, 胡东. 串联型脉冲喷嘴的实验研究[J]. 湖南工业大学学报, 2007, 21(4): 60-64.

    TANG C L, WU X, HU D. The experimental study on the series pulsed nozzle[J]. Journal of Hunan University of Technology, 2007, 21(4): 60-64. (in Chinese)
    [16] SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//Proceedings of the 4th International Conference on Multiphase Flow. New Orleans, 2001.
  • 加载中
图(10)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  68
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回