留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙皮镜像加工误差实时补偿优化方法研究

吴子腾 张立强 杨青平 曹珍珍 钟柳春

吴子腾, 张立强, 杨青平, 曹珍珍, 钟柳春. 蒙皮镜像加工误差实时补偿优化方法研究[J]. 机械科学与技术, 2023, 42(4): 644-650. doi: 10.13433/j.cnki.1003-8728.20200620
引用本文: 吴子腾, 张立强, 杨青平, 曹珍珍, 钟柳春. 蒙皮镜像加工误差实时补偿优化方法研究[J]. 机械科学与技术, 2023, 42(4): 644-650. doi: 10.13433/j.cnki.1003-8728.20200620
WU Ziteng, ZHANG Liqiang, YANG Qingping, CAO Zhenzhen, ZHONG Liuchun. Study on Optimization Method of Skin Error in Mirror Machining via Real-time Compensation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 644-650. doi: 10.13433/j.cnki.1003-8728.20200620
Citation: WU Ziteng, ZHANG Liqiang, YANG Qingping, CAO Zhenzhen, ZHONG Liuchun. Study on Optimization Method of Skin Error in Mirror Machining via Real-time Compensation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 644-650. doi: 10.13433/j.cnki.1003-8728.20200620

蒙皮镜像加工误差实时补偿优化方法研究

doi: 10.13433/j.cnki.1003-8728.20200620
基金项目: 

国家自然科学基金项目 51775328

详细信息
    作者简介:

    吴子腾(1997-), 硕士研究生, 研究方向为航空航天智能制造与先进工艺, 1137463072@qq.com

    通讯作者:

    张立强, 教授, 硕士生导师, zhanglq@sues.edu.cn

  • 中图分类号: TH161+.5;V261.99

Study on Optimization Method of Skin Error in Mirror Machining via Real-time Compensation

  • 摘要: 针对传统的飞机蒙皮镜像加工误差补偿方法收敛速度慢, 在大进给高速加工中很难完成较好的补偿效果的问题, 提出了一种蒙皮镜像加工误差实时补偿优化方法。该方法基于双点弦截法, 借助超声波测厚仪前两次获得的蒙皮壁厚与程序切削深度, 计算下一点的补偿值, 并通过控制镜像铣补偿轴运动实现加工误差补偿, 有效的提升了飞机蒙皮镜像铣的补偿效果, 减小了加工误差。最后通过有限元仿真和试验证明了该方法的优越性, 最大加工误差降低了41.67%, 总体加工误差降低了41.96%。
  • 图  1  镜像铣削系统

    图  2  支撑侧

    图  3  实时补偿逻辑关系

    图  4  薄壁件加工中的变形

    图  5  加工迭代补偿过程

    图  6  飞机蒙皮试验件数学模型

    图  7  支撑力测量

    图  8  加工误差分析测量点

    图  9  加工误差迭代补偿仿真流程图

    图  10  加工变形有限元仿真结果

    图  11  仿真误差结果

    图  12  加工现场

    图  13  加工试验件槽特征

    图  14  加工误差对比

    表  1  精加工参数

    参数 数值 参数 数值
    转速 8 000 r/min 刀具直径 20 mm
    进给 1 500 mm/min 刀具刃数 2
    切削宽度 12 mm 刀具螺旋角 0
    切削深度 0.5 mm 浮动支撑力 75 N
    目标壁厚 1.5 mm 水压 250 kPa
    下载: 导出CSV
  • [1] 鲍岩, 董志刚, 朱祥龙, 等. 蒙皮镜像铣削支撑技术的研究现状和发展趋势[J]. 航空学报, 2018, 39(4): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201804003.htm

    BAO Y, DONG Z G, ZHU X L, et al. Review on support technology for mirror milling of aircraft skin[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 47-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201804003.htm
    [2] BO Q L, LIU H B, LIAN M, et al. The influence of supporting force on machining stability during mirror milling of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9): 2341-2353.
    [3] GAO Y Y, MA J W, JIA Z Y, et al. Tool path planning and machining deformation compensation in high-speed milling for difficult-to-machine material thin-walled parts with curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 1757-1767. doi: 10.1007/s00170-015-7825-4
    [4] 陈蔚芳, 楼佩煌, 陈华. 薄壁件加工变形主动补偿方法[J]. 航空学报, 2009, 30(3): 570-576. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200903027.htm

    CHEN W F, LOU P H, CHEN H. Active compensation methods of machining deformation of thin-walled parts[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 570-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200903027.htm
    [5] 侯尧华, 张定华, 张莹. 薄壁件加工误差补偿建模与学习控制方法[J]. 机械工程学报, 2018, 54(17): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201817016.htm

    HOU Y H, ZHANG D H, ZHANG Y. Error compensation modeling and learning control method for thin-walled part milling process[J]. Journal of Mechanical Engineering, 2018, 54(17): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201817016.htm
    [6] 张凯. 面向航空筒段薄壁件的等厚补偿加工方法研究[D]. 上海: 上海工程技术大学, 2016: 37-48.

    ZHANG K. The research on equal thickness compensation method for thin-walled cylinder workpiece machining[D]. Shanghai: Shanghai University of Engineering Science, 2016: 37-48. (in Chinese)
    [7] WANG X Z, BI Q Z, ZHU L M, et al. Improved forecasting compensatory control to guarantee the remaining wall thickness for pocket milling of a large thin-walled part[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 1677-1688. doi: 10.1007/s00170-016-9785-8
    [8] 董志刚, 康仁科, 鲍岩, 等. 镜像铣削加工蒙皮形貌误差实时非接触测量与补偿装置及蒙皮厚度精确控制方法: 中国, 108073131B[P]. 2020-09-29.
    [9] LIAN M, LIU H B, ZHANG T Y, et al. Ultrasonic on-machine scanning for thickness measurement of thin-walled parts: modeling and experiments[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8): 2061-2072. doi: 10.1007/s00170-019-04021-5
    [10] MAHMUD A. Mechanical pocket milling of thin aluminum panel with a grasping and machining end effector[D]. Montreal: Universite De Montreal, 2015: 21-36.
    [11] DIEZ E, PEREZ H, MARQUEZ J, et al. Feasibility study of in-process compensation of deformations in flexible milling[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 1-14. doi: 10.1016/j.ijmachtools.2015.03.008
    [12] YUAN Y, ZHANG H T, WU Y, et al. Bayesian learning-based model-predictive vibration control for thin-walled workpiece machining processes[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 509-520. doi: 10.1109/TMECH.2016.2620987
    [13] LIU C Q, LI Y G, SHEN W M. A real time machining error compensation method based on dynamic features for cutting force induced elastic deformation in flank milling[J]. Machining Science and Technology, 2018, 22(5): 766-786. doi: 10.1080/10910344.2017.1402933
    [14] WANG X Z, LI Z L, BI Q Z, et al. An accelerated convergence approach for real-time deformation compensation in large thin-walled parts machining[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 98-106. doi: 10.1016/j.ijmachtools.2018.12.004
    [15] WEI H Y, MAO J, WANG N. Retracted: machining deformation control and compensation using whole mirror milling method for tank thin-walled parts[C]//2017 International Conference on Smart City and Systems Engineering (ICSCSE). Changsha: IEEE, 2017: 23-28.
    [16] ZHANG S K, BI Q Z, JI Y L, et al. Real-time thickness compensation in mirror milling based on modified Smith predictor and disturbance observer[J]. International Journal of Machine Tools and Manufacture, 2019, 144: 103427.
    [17] KAW A K, KALU E K, NGUYEN D. Numerical methods with applications[M]. 2nd ed. Tampa Bay: University of South Florida, 2011: 182-189.
    [18] 鲍岩. 面向飞机蒙皮制造的薄板镜像铣削工艺基础[D]. 大连: 大连理工大学, 2018: 26-40.

    BAO Y. Foundation of mirror milling technology of sheet for aircraft skin manufacturing[D]. Dalian: Dalian University of Technology, 2018: 26-40. (in Chinese)
    [19] 阮大文, 茅健, 刘钢, 等. 双五轴数控铣削机床旋转轴误差辨识方法[J]. 中国机械工程, 2020, 31(13): 1548-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202013007.htm

    RUAN D W, MAO J, LIU G, et al. A method for error identification of rotation axes of dual-five-axis CNC milling machines[J]. China Mechanical Engineering, 2020, 31(13): 1548-1554. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202013007.htm
    [20] 郭景浩, 张立强, 王勇, 等. 基于非参数误差模型的镜像铣同步精度补偿[J]. 计算机集成制造系统, 2020, 26(7): 1756-1762.

    GUO J H, ZHANG L Q, WANG Y, et al. Compensation of mirror milling synchronization accuracy based on non-parametric error model[J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1756-1762. (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  58
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回