留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风力机叶片翼型俯仰与动尾翼耦合运动数值仿真

李松林 朱卫军 孙振业 陶秋晗 曾明伍

李松林,朱卫军,孙振业, 等. 风力机叶片翼型俯仰与动尾翼耦合运动数值仿真[J]. 机械科学与技术,2023,42(6):962-968 doi: 10.13433/j.cnki.1003-8728.20200563
引用本文: 李松林,朱卫军,孙振业, 等. 风力机叶片翼型俯仰与动尾翼耦合运动数值仿真[J]. 机械科学与技术,2023,42(6):962-968 doi: 10.13433/j.cnki.1003-8728.20200563
LI Songlin, ZHU Weijun, SUN Zhenye, TAO Qiuhan, ZENG Mingwu. Numerical Simulation of Combined Motions of Wind Turbine Airfoil Flap and Pitch[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 962-968. doi: 10.13433/j.cnki.1003-8728.20200563
Citation: LI Songlin, ZHU Weijun, SUN Zhenye, TAO Qiuhan, ZENG Mingwu. Numerical Simulation of Combined Motions of Wind Turbine Airfoil Flap and Pitch[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 962-968. doi: 10.13433/j.cnki.1003-8728.20200563

风力机叶片翼型俯仰与动尾翼耦合运动数值仿真

doi: 10.13433/j.cnki.1003-8728.20200563
基金项目: 国家自然科学基金项目(11672261,51905469)与四川省科技厅2019年重点研发项目(2019YFG0018)
详细信息
    作者简介:

    李松林(1986−),工程师,博士,研究方向为风力机叶片设计,li20052115@126.com

    通讯作者:

    朱卫军,教授,博士,wjzhu@yzu.edu.cn

  • 中图分类号: TK83

Numerical Simulation of Combined Motions of Wind Turbine Airfoil Flap and Pitch

  • 摘要: 现代风力机叶片普遍采用变桨系统降低气动载荷。尾缘襟翼是实现飞机机翼载荷控制的一种可行方法,然而由于相关技术尚未成熟,动尾翼尚未实际应用在风力机叶片上。本文采用数值计算模拟和分析动尾翼与翼型俯仰耦合状况下的动态升力变化。采用结构化网格,对尾缘襟翼部分应用浸入边界方法,其余部分仍然沿用传统贴体网格算法,实现了动尾翼的仿真又保证了较高的计算效率。计算结果与风洞实验进行了详细对比,动态升力的变化趋势和大小均显示了较好的吻合,为包含动尾翼的智能叶片开发提供参考。
  • 图  1  动尾翼风力机叶片

    图  2  全贴体网格

    图  3  贴体网格与浸入边界网格的混合

    图  4  结合浸入边界方法的NS方程求解流程图

    图  5  尾缘襟翼弹性运动示意图

    图  6  尾翼静止时贴体网格和混合网格对比

    图  7  尾翼运动时水平速度分量云图

    图  8  翼型升力曲线

    图  9  风洞实验中NACA 0012翼型和可动襟翼[15]

    图  10  组合1计算结果

    图  11  组合2计算结果

    图  12  组合3计算结果

    图  13  组合4计算结果

    图  14  组合5计算结果

    表  1  俯仰与尾缘襟翼运动函数组合

    组合俯仰运动函数尾缘襟翼运动函数
    1$ \alpha = 4^\circ + 6^\circ \sin \left( {10{\text{π} }t} \right)$$ \delta = 0^\circ + 5.4^\circ \sin (20{\text{π} }t - 148^\circ )$
    2$ \alpha = 4^\circ + 6^\circ \sin \left( {10{\text{π} }t} \right)$$ \delta = 0^\circ + 5.4^\circ \sin (20{\text{π} }t - 298^\circ )$
    3$ \alpha = 4^\circ + 6^\circ \sin \left( {10{\text{π} }t} \right)$$ \delta = 0^\circ + 5.4^\circ \sin (20{\text{π} }t - 357^\circ )$
    4$ \alpha = 5^\circ + 5.5^\circ \sin \left( {10{\text{π} }t} \right)$$ \delta = 0^\circ + 5.0^\circ \sin (20{\text{π} }t - 148^\circ )$
    5$ \alpha = 4.5^\circ + 5.75^\circ \sin \left( {10{\text{π} }t} \right)$$ \delta = 0^\circ + 5.0^\circ \sin (20{\text{π} }t - 206^\circ )$
    下载: 导出CSV
  • [1] BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27. doi: 10.1016/j.paerosci.2009.08.002
    [2] 余畏, 张明明, 徐建中. 基于柔性尾缘襟翼的风电叶片气动载荷智能控制[J]. 工程热物理学报, 2013, 34(6): 1055-1060.

    YU W, ZHANG M M, XU J Z. Effect of smart rotor control using deformable trailing edge flap on aerodynamic load reduction[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1055-1060. (in Chinese)
    [3] KATZ J, PLOTKIN A. Low-speed aerodynamics: from wing theory to panel methods[M]. New York: McGraw Hill House, 1991: 386-390
    [4] 谢凯, ABBAS L K, 陈东阳, 等. 翼型非定常来流下复合运动动态失速仿真[J]. 哈尔滨工程大学学报, 2019, 40(5): 865-871.

    XIE K, ABBAS L K, CHEN D Y, et al. Numerical simulations on dynamic stall of a complex motion of airfoil under unsteady freestream velocity[J]. Journal of Harbin Engineering University, 2019, 40(5): 865-871. (in Chinese)
    [5] 徐佩, 郭春雨, 王超, 等. 二维振荡翼型俯仰和升沉耦合运动的水动力性能分析[J]. 船舶力学, 2020, 24(3): 271-281.

    XU P, GUO C Y, WANG C, et al. Hydrodynamic performance analysis of pitching and heaving coupling motion for two dimensional oscillating airfoil[J]. Journal of Ship Mechanics, 2020, 24(3): 271-281. (in Chinese)
    [6] 张一楠, 张明明, 蔡畅, 等. 仿鲸鱼鳍翼型动态气动力载荷控制研究[J]. 工程热物理学报, 2020, 41(4): 884-890.

    ZHANG Y N, ZHANG M M, CAI C, et al. Load control on a dynamically pitching wind turbine airfoil with bionic wavy leading edge[J]. Journal of Engineering Thermophysics, 2020, 41(4): 884-890. (in Chinese)
    [7] 郝文星, 李春, 丁勤卫, 等. 随机风况下襟翼闭环载荷控制的数值研究[J]. 工程热物理学报, 2017, 38(6): 1237-1242.

    HAO W X, LI C, DING Q W, et al. Numerical study of the closed loop load control of trailing edge flap under the random wind condition[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1237-1242. (in Chinese)
    [8] 李传峰, 徐宇, 赵晓路, 等. 风力机翼型尾缘襟翼动态特性分析[J]. 工程热物理学报, 2014, 35(5): 883-887.

    LI C F, XU Y, ZHAO X L, et al. Analysis on dynamic performance of trailing edge flap on wind turbine airfoil[J]. Journal of Engineering Thermophysics, 2014, 35(5): 883-887. (in Chinese)
    [9] PESKIN S C. The fluid dynamics of heart valves: experimental, theoretical, and computational methods[J]. Annual Review of Fluid Mechanics, 1982, 14: 235-259. doi: 10.1146/annurev.fl.14.010182.001315
    [10] KALITZIN G, IACCARINO G. Turbulence modeling in an immersed-boundary RANS method[R]// Center for Turbulence Research Annual Research Briefs, Stanford University, California, 2002: 415-426
    [11] ZHU W J, BEHRENS T, SHEN W Z, et al. Hybrid immersed boundary method for airfoils with a trailing-edge flap[J]. AIAA Journal, 2013, 51(1): 30-41. doi: 10.2514/1.J051446
    [12] ZHU W J, SHEN W Z, SØRENSEN J N. Numerical investigation of flow control feasibility with a trailing edge flap[J]. Journal of Physics:Conference Series, 2014, 524: 012102. doi: 10.1088/1742-6596/524/1/012102
    [13] SPECKLIN M, DELAURÉ Y. A sharp immersed boundary method based on penalization and its application to moving boundaries and turbulent rotating flows[J]. European Journal of Mechanics-B/Fluids, 2018, 70: 130-147. doi: 10.1016/j.euromechflu.2018.03.003
    [14] WANG L, TIAN F B. Numerical study of flexible flapping wings with an immersed boundary method: Fluid-structure-acoustics interaction[J]. Journal of Fluids and Structures, 2019, 90: 396-409. doi: 10.1016/j.jfluidstructs.2019.07.003
    [15] KRZYSIAK A, NARKIEWICZ J. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of Aircraft, 2006, 43(2): 407-418. doi: 10.2514/1.15597
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  79
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-17
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回