留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙曲面无摩擦接触下的亚表面裂纹扩展分散性研究

周炜 罗柏瑶 唐进元

周炜,罗柏瑶,唐进元. 粗糙曲面无摩擦接触下的亚表面裂纹扩展分散性研究[J]. 机械科学与技术,2022,41(11):1671-1678 doi: 10.13433/j.cnki.1003-8728.20200554
引用本文: 周炜,罗柏瑶,唐进元. 粗糙曲面无摩擦接触下的亚表面裂纹扩展分散性研究[J]. 机械科学与技术,2022,41(11):1671-1678 doi: 10.13433/j.cnki.1003-8728.20200554
ZHOU Wei, LUO Baiyao, TANG Jinyuan. Study on Scatter in Crack Propagation of Subsurface for Rough Surface Under Frictionless Contact[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1671-1678. doi: 10.13433/j.cnki.1003-8728.20200554
Citation: ZHOU Wei, LUO Baiyao, TANG Jinyuan. Study on Scatter in Crack Propagation of Subsurface for Rough Surface Under Frictionless Contact[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1671-1678. doi: 10.13433/j.cnki.1003-8728.20200554

粗糙曲面无摩擦接触下的亚表面裂纹扩展分散性研究

doi: 10.13433/j.cnki.1003-8728.20200554
基金项目: 国家自然科学基金项目(51705142)、湖南省自然科学基金项目(2018JJ3162)及难加工材料高效精密加工湖南省重点实验室开放基金项目(E21752)
详细信息
    作者简介:

    周炜(1985−),讲师,硕士生导师,博士,研究方向为表面摩擦学、结构疲劳与断裂,cnihelat@163.com

  • 中图分类号: TH114

Study on Scatter in Crack Propagation of Subsurface for Rough Surface Under Frictionless Contact

  • 摘要: 针对粗糙曲面无摩擦接触,为探究表面粗糙度对亚表面裂纹扩展分散性的影响,借助FFT粗糙表面重构方法获得不同统计分布下的随机形貌样本,通过弹性接触数值计算确定形貌样本对应接触压力分布,以所得接触压力分布为输入,基于线弹性接触力学和扩展有限元法计算亚表面裂纹在不同曲率半径和外载下的扩展路径与寿命。结果表明:1)相同粗糙度统计分布下裂纹扩展路径与寿命表现出较大分散性,且分散性与粗糙度标准偏差、曲率半径和外载有关;2)曲率半径对裂纹扩展寿命影响很大,不同曲率半径下裂纹扩展寿命变化规律相差迥异;3)粗糙度相关长度对裂纹扩展影响较小,两者未表现出显著相关性。
  • 图  1  粗糙曲面接触示意图

    图  2  刚性平面与等效粗糙曲面接触示意图

    图  3  压力-位移关系示意图

    图  4  应力计算模型示意图

    图  5  裂纹扩展计算对比

    图  6  不同粗糙度形貌样本及其接触压力分布

    图  7  裂纹扩展计算模型

    图  8  裂纹扩展随标准偏差分布

    图  9  裂纹扩展随相关长度分布

    图  10  裂纹扩展随外载分布

    图  11  裂纹扩展分散性

    表  1  分散性大小对比

    名称W = 0.5W = 1
    ρ = 500 ρ = 5000 ρ = 5000 ρ = ∞
    最大寿命 4.447 5.958 0.537 0.0695
    最小寿命 3.994 2.164 0.3957 0.0444
    寿命百分比 11.34 175.32 35.73 59.4
    寿命分布标准偏差 0.215 1.368 0.064 0.011
    下载: 导出CSV
  • [1] 黄平, 郭丹, 温诗铸. 界面力学[M]. 北京: 清华大学出版社, 2013

    HUANG P, GUO D, WEN S Z. Interface mechanics[M]. Beijing: Tsinghua University Press, 2013 (in Chinese)
    [2] VAKIS A I, YASTREBOV V A, SCHEIBERT J, et al. Modeling and simulation in tribology across scales: an overview[J]. Tribology International, 2018, 125: 169-199 doi: 10.1016/j.triboint.2018.02.005
    [3] MENG Y G, XU J, JIN Z M, et al. A review of recent advances in tribology[J]. Friction, 2020, 8(2): 221-300 doi: 10.1007/s40544-020-0367-2
    [4] LIU H J, LIU H L, ZHU C C, et al. A review on micropitting studies of steel gears[J]. Coatings, 2019, 9(1): 42 doi: 10.3390/coatings9010042
    [5] LORENZ S J, SADEGHI F, TRIVEDI H K, et al. A continuum damage mechanics finite element model for investigating effects of surface roughness on rolling contact fatigue[J]. International Journal of Fatigue, 2021, 143: 105986 doi: 10.1016/j.ijfatigue.2020.105986
    [6] 何宝凤, 魏翠娥, 刘柄显, 等. 三维表面粗糙度的表征和应用[J]. 光学 精密工程, 2018, 26(8): 1994-2011 doi: 10.3788/OPE.20182608.1994

    HE B F, WEI C E, LIU B X, et al. Three-dimensional surface roughness characterization and application[J]. Optics and Precision Engineering, 2018, 26(8): 1994-2011 (in Chinese) doi: 10.3788/OPE.20182608.1994
    [7] DENG G, SUZUKI S, NAKANISHI T. Effects of surface roughness and abnormal surface layer on fatigue strength[J]. Applied Mechanics and Materials, 2011, 86: 867-870 doi: 10.4028/www.scientific.net/AMM.86.867
    [8] GU Z L, ZHU C C, LIU H J, et al. Subsurface stress-field analysis of generating ground helical gear based on finite line-contact mixed elastohydrodynamic lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(1): 3-17 doi: 10.1177/1350650120925574
    [9] QIN W, JIN X, KIRK A, et al. Effects of surface roughness on local friction and temperature distributions in a steel-on-steel fretting contact[J]. Tribology International, 2018, 120: 350-357 doi: 10.1016/j.triboint.2018.01.016
    [10] 邹文栋, 黄长辉, 欧阳小琴, 等. 合金韧窝断口微观形貌的扫描白光干涉三维检测重构及Motif表征[J]. 机械工程学报, 2011, 47(10): 8-13 doi: 10.3901/JME.2011.10.008

    ZOU W D, HUANG C H, OUYANG X Q, et al. Scanning white-light interferometric measurement 3D reconstruction and motif evaluation of alloy dimple fracture microtopography[J]. Journal of Mechanical Engineering, 2011, 47(10): 8-13 (in Chinese) doi: 10.3901/JME.2011.10.008
    [11] 唐进元, 廖东日, 周炜. 基于NCGM的粗糙表面数值模拟与实验对比[J]. 中国机械工程, 2014, 25(14): 1878-1882 doi: 10.3969/j.issn.1004-132X.2014.14.007

    TANG J Y, LIAO D R, ZHOU W. Numerical and experimental analysis of rough surface based on NCGM[J]. China Mechanical Engineering, 2014, 25(14): 1878-1882 (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.14.007
    [12] PAWLUS P, REIZER R, WIECZOROWSKI M. A Review of methods of random surface topography modeling[J]. Tribology International, 2020, 152: 106530 doi: 10.1016/j.triboint.2020.106530
    [13] ZHOU W, TANG J Y, HE Y F. Formulae of roughness peak distribution parameters with standard deviation and correlation length[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2015, 229(12): 1395-1408 doi: 10.1177/1350650115579212
    [14] QI Q, LI T, SCOTT P J, et al. A correlational study of areal surface texture parameters on some typical machined surfaces[J]. Procedia CIRP, 2015, 27: 149-154 doi: 10.1016/j.procir.2015.04.058
    [15] PRAJAPATI D K, TIWARI M. Assessment of topography parameters during running-in and subsequent rolling contact fatigue tests[J]. Journal of Tribology, 2019, 141(5): 051401 doi: 10.1115/1.4042676
    [16] YANG D, TANG J Y, ZHOU W, et al. Correlation between surface roughness parameters and contact stress of gear[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2021, 235(3): 551-563 doi: 10.1177/1350650120928661
    [17] 吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538

    WU S C, LI C H, ZHANG W, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538 (in Chinese)
    [18] 方修洋, 黄伟, 王俊国. 温度对动车组车轮钢服役次生疲劳裂纹起裂扩展特性影响[J]. 中国机械工程, 2020, 31(3): 261-266 doi: 10.3969/j.issn.1004-132X.2020.03.002

    FANG X Y, HUANG W, WANG J G. Effects of temperature on secondary fatigue crack initiation and growth behavior of high-speed railway wheel steels[J]. China Mechanical Engineering, 2020, 31(3): 261-266 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.03.002
    [19] 周宇, 邝迪峰, 郑晓峰, 等. 基于三维重构的钢轨滚动接触疲劳裂纹扩展预测[J]. 机械工程学报, 2018, 54(4): 158-166 doi: 10.3901/JME.2018.04.158

    ZHOU Y, KUANG D F, ZHENG X F, et al. Prediction of the rail head checks propagation based on three dimensional reconstruction[J]. Journal of Mechanical Engineering, 2018, 54(4): 158-166 (in Chinese) doi: 10.3901/JME.2018.04.158
    [20] 刘涛, 鲍宏, 朱达荣, 等. 基于磁记忆和表面纹理特征融合的再制造毛坯疲劳损伤评估[J]. 中国机械工程, 2018, 29(13): 1615-1621 doi: 10.3969/j.issn.1004-132X.2018.13.016

    LIU T, BAO H, ZHU D R, et al. Fatigue damage evaluation of remanufacturing cores using feature fusion of magnetic memory and surface texture[J]. China Mechanical Engineering, 2018, 29(13): 1615-1621 (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.13.016
    [21] 郭帅, 赵相吉, 何成刚, 等. 水介质下打磨磨痕对钢轨疲劳损伤的影响[J]. 中国机械工程, 2019, 30(8): 889-895 doi: 10.3969/j.issn.1004-132X.2019.08.002

    GUO S, ZHAO X J, HE C G, et al. Effects of grinding marks on fatigue damage of rails under water conditions[J]. China Mechanical Engineering, 2019, 30(8): 889-895 (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.08.002
    [22] VIJAY A, PAULSON N, SADEGHI F. A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue[J]. International Journal of Fatigue, 2018, 106: 92-102 doi: 10.1016/j.ijfatigue.2017.09.016
    [23] LEWICKI D G. Gear crack propagation path studies: guidelines for ultra-safe design[R]. Washington: NASA, 2001
    [24] THOMAS T R. Rough surfaces[M]. London: Imperial College Press, 1999
    [25] ZHOU W, TANG J Y, HE Y F, et al. Modeling of rough surfaces with given roughness parameters[J]. Journal of Central South University, 2017, 24(1): 127-136 doi: 10.1007/s11771-017-3415-y
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  55
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回