留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3纳米流体自激式脉动传热的热流道结构优选

袁红梅 汪朝晖

袁红梅,汪朝晖. Al2O3纳米流体自激式脉动传热的热流道结构优选[J]. 机械科学与技术,2022,41(11):1679-1685 doi: 10.13433/j.cnki.1003-8728.20200537
引用本文: 袁红梅,汪朝晖. Al2O3纳米流体自激式脉动传热的热流道结构优选[J]. 机械科学与技术,2022,41(11):1679-1685 doi: 10.13433/j.cnki.1003-8728.20200537
YUAN Hongmei, WANG Zhaohui. Optimization of Hot Runner Structure for Self-excitedPulsating Heat Transfer of Al2O3 Nanofluid[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1679-1685. doi: 10.13433/j.cnki.1003-8728.20200537
Citation: YUAN Hongmei, WANG Zhaohui. Optimization of Hot Runner Structure for Self-excitedPulsating Heat Transfer of Al2O3 Nanofluid[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1679-1685. doi: 10.13433/j.cnki.1003-8728.20200537

Al2O3纳米流体自激式脉动传热的热流道结构优选

doi: 10.13433/j.cnki.1003-8728.20200537
基金项目: 国家自然科学基金项目(51875419)
详细信息
    作者简介:

    袁红梅(1994−),硕士研究生,研究方向为脉动纳米流体强制对流传热,hmyuan314@163.com

    通讯作者:

    汪朝晖,教授,博士生导师,博士, wustzhwang@163.com

  • 中图分类号: D480.99

Optimization of Hot Runner Structure for Self-excitedPulsating Heat Transfer of Al2O3 Nanofluid

  • 摘要: 在对流传热过程中,如何增加边界扰动以改善传热性能,是实现强化传热的关键问题。基于自激振荡腔的脉动效应和纳米流体的高热导率,提出了一种纳米流体无源脉动强化传热机制。采用正交数值试验方法对自激振荡热流道的主要结构参数进行优化研究,利用大涡模拟湍流模型分析了热流道的结构参数对Al2O3纳米流体传热特性的影响规律,并获得了最优结构参数配比。结果表明:腔室长度对热流道中纳米流体的传热性能影响最大,腔室直径影响最小,并观察到无量纲参数L/d1=7、D/d1=11、d2/d0=1.1的自激振荡热流道具有最佳传热性能。
  • 图  1  自激振荡热流道结构示意图

    图  2  自激振荡热流道涡流分布示意图

    图  3  不同网格尺寸下腔室中心线的时均速度

    图  4  一个脉动周期内热流道中的涡量分布

    图  5  壁面温度沿轴向位置的变化情况

    图  6  壁面努塞尔数沿轴向位置的变化情况

    表  1  自激振荡热流道初始结构参数

    结构参数尺寸
    上流道入口直径d0/mm 12
    上流道入口长度l0/mm 15
    上流道出口直径d1/mm 6
    上流道出口长度l1/mm 5
    下流道直径d2 d0
    下流道长度l2/mm 150
    腔室直径D 10d1
    腔室长度L 6d1
    收敛角α/(º) 14
    碰撞角θ/(º) 120
    下载: 导出CSV

    表  2  Al2O3纳米颗粒和水的热物理性质

    物性参数Al2O3
    ρ/(kg·m−3 3 880 998.2
    Cp/(J·(kg·K)−1 773 4 182
    μnf /(Pa·s) 9.98×10−4
    k/(W·(m·K)−1 36 0.597
    下载: 导出CSV

    表  3  热流道主要结构参数因素-水平表

    因素水平ABC
    11040.8
    21150.9
    31261.0
    41371.1
    下载: 导出CSV

    表  4  正交数值试验方案及试验结果表

    编号AB空列C空列组合Nuav
    11040.80.80.8A1B1C1340.8789
    21050.90.90.9A1B2C2451.6409
    31061.01.01.0A1B3C3543.8952
    41071.11.11.1A1B4C4592.7202
    51141.00.91.1A2B1C2392.9558
    61151.10.81.0A2B2C1426.2260
    71160.81.10.9A2B3C4596.9104
    81170.91.00.8A2B4C3559.9789
    91241.11.00.9A3B1C3421.1068
    101251.01.10.8A3B2C4505.6841
    111260.90.81.1A3B3C1525.4945
    121270.80.91.0A3B4C2616.7067
    131340.91.11.0A4B1C4432.8087
    141350.81.01.1A4B2C3475.6208
    151361.10.90.8A4B3C2480.7732
    161371.00.80.9A4B4C1633.8898
    k1482.2838396.9375507.5292481.6223471.8288Tin = 293.15 K
    Twall = 343.15 K
    Rein = 40000
    k2494.0178464.7929492.4808485.5191525.8870
    k3517.2480536.7684519.1062500.1504504.9091
    k4505.7731600.8239480.2066532.0309496.6978
    R34.9642203.886438.899750.408654.0582
    下载: 导出CSV

    表  5  方差分析表

    方差来源平方和自由度F显著性
    A2721.4330.574Δ
    B93514.66319.741***
    C6293.2831.328*
    e9474.336
    总和112003.6915
    注:Δ不显著;*显著;**较显著;***高度显著。
    下载: 导出CSV
  • [1] ZAKI M, ABDEL-AZIZ M H, NIRDOSH I, et al. Intensification of the rate of heat and mass transfer in a batch and continuous parallel plate contactor by pulsed flow[J]. Chemical Engineering Journal, 2020, 398: 125589 doi: 10.1016/j.cej.2020.125589
    [2] 黄其, 王勋廷, 杨志超, 等. 有序涡旋对三角槽道脉动流强化传热的影响[J]. 化工学报, 2016, 67(9): 3616-3624

    HUANG Q, WANG X T, YANG Z C, et al. Influence of vortex on heat transfer enhancement in triangular grooved Channel by pulsating flow[J]. CIESC Journal, 2016, 67(9): 3616-3624 (in Chinese)
    [3] LI S N, ZHANG H N, CHENG J P, et al. A state-of-the-art overview on the developing trend of heat transfer enhancement by single-phase flow at micro scale[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118476 doi: 10.1016/j.ijheatmasstransfer.2019.118476
    [4] HOANG V Q, HOANG T T, DINH C T, et al. Large eddy simulation of the turbulence heat and mass transfer of pulsating flow in a V-sharp corrugated Channel[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120720 doi: 10.1016/j.ijheatmasstransfer.2020.120720
    [5] 李思文, 李华, 杨臧健, 等. 光管内湍流脉动传热影响因素的实验研究[J]. 浙江工业大学学报, 2013, 41(4): 395-399 doi: 10.3969/j.issn.1006-4303.2013.04.009

    LI S W, LI H, YANG Z J, et al. Experimental study on influencing factors of pulsating heat transfer in turbulent flow in a pipe[J]. Journal of Zhejiang University of Technology, 2013, 41(4): 395-399 (in Chinese) doi: 10.3969/j.issn.1006-4303.2013.04.009
    [6] 舒梦梅, 卿德藩, 王红兵. 缩放管内脉动流传热性能研究[J]. 机械研究与应用, 2018, 31(2): 77-80

    SHU M M, QING D F, WANG H B. Study on heat transfer performance of pulsating flow in convergent-divergent tube[J]. Mechanical Research & Application, 2018, 31(2): 77-80 (in Chinese)
    [7] 陈军伟, 闵春华, 张媛, 等. 脉动流强化翅片散热器数值模拟研究[J]. 河北工业大学学报, 2019, 48(5): 33-38

    CHEN J W, MIN C H, ZHANG Y, et al. Numerical study on finned radiator under pulsating flow for heat dissipation enhancement[J]. Journal of Hebei University of Technology, 2019, 48(5): 33-38 (in Chinese)
    [8] 徐艳英, 翟明, 董芃. 弯尾管亥姆霍茨型无阀自激脉动燃烧器传热特性[J]. 热能动力工程, 2014, 29(6): 709-713

    XU Y Y, ZHAI M, DONG P. Heat transfer characteristics of a bent tail tube Helmholtz type valveless self-excited pulsation burner[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(6): 709-713 (in Chinese)
    [9] KEBLINSKI P, PHILLPOT S R, CHOI S U S, et al. Mechanisms of heat flow in suspensions of Nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863 doi: 10.1016/S0017-9310(01)00175-2
    [10] XU C, XU S L, WEI S T, et al. Experimental investigation of heat transfer for pulsating flow of GOPs-water nanofluid in a microchannel[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104403 doi: 10.1016/j.icheatmasstransfer.2019.104403
    [11] RAHGOSHAY M, RANJBAR A A, RAMIAR A. Laminar pulsating flow of nanofluids in a circular tube with isothermal wall[J]. International Communications in Heat and Mass Transfer, 2012, 39(3): 463-469 doi: 10.1016/j.icheatmasstransfer.2011.12.008
    [12] LI P, GUO D Z, LIU R R. Mechanism analysis of heat transfer and flow structure of periodic pulsating nanofluids slot-jet impingement with different waveforms[J]. Applied Thermal Engineering, 2019, 152: 937-945 doi: 10.1016/j.applthermaleng.2019.01.086
    [13] SIVASANKARAN S, NARREIN K. Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel filled with a porous medium[J]. International Communications in Heat and Mass Transfer, 2016, 75: 86-91 doi: 10.1016/j.icheatmasstransfer.2016.03.016
    [14] KHOSRAVI-BIZHAEM H, ABBASSI A, RAVAN A Z. Heat transfer enhancement and pressure drop by pulsating flow through helically coiled tube: an experimental study[J]. Applied Thermal Engineering, 2019, 160: 114012 doi: 10.1016/j.applthermaleng.2019.114012
    [15] NAZARI M A, GHASEMPOUR R, AHMADI M H. A review on using nanofluids in heat pipes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6): 1847-1855 doi: 10.1007/s10973-019-08094-y
    [16] LIU W C, YONG K, ZHANG M X, et al. Self-sustained oscillation and cavitation characteristics of a jet in a Helmholtz resonator[J]. International Journal of Heat and Fluid Flow, 2017, 68: 158-172 doi: 10.1016/j.ijheatfluidflow.2017.10.004
    [17] 王乐勤, 王循明, 徐如良, 等. 自激振荡脉冲喷嘴结构参数配比试验研究[J]. 工程热物理学报, 2004, 25(6): 956-958 doi: 10.3321/j.issn:0253-231X.2004.06.016

    WANG L Q, WANG X M, XU R L, et al. Experimental study on structural parameters optimized design of the self-excited oscillation pulsed jet nozzle[J]. Journal of Engineering Thermophysics, 2004, 25(6): 956-958 (in Chinese) doi: 10.3321/j.issn:0253-231X.2004.06.016
    [18] ALI A R I, SALAM B. A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application[J]. SN Applied Sciences, 2020, 2(10): 1636 doi: 10.1007/s42452-020-03427-1
    [19] YU C L, CHEN J, ZENG M, et al. Numerical study on turbulent heat transfer performance of a new parallel-flow shell and tube heat exchanger with sinusoidal wavy tapes using RSM analysis[J]. Applied Thermal Engineering, 2019, 150: 875-887 doi: 10.1016/j.applthermaleng.2019.01.043
    [20] 王乐勤, 王循明, 徐如良, 等. 低压大流量自激振荡脉冲射流喷嘴结构参数优化研究[J]. 流体机械, 2004, 32(3): 7-10+31 doi: 10.3969/j.issn.1005-0329.2004.03.003

    WANG L Q, WANG X M, XU R L, et al. Structure-parameter optimized study of self-exicited oscillation pulsation-jet nozzle in low-press and amount-flux[J]. Fluid Machinery, 2004, 32(3): 7-10+31 (in Chinese) doi: 10.3969/j.issn.1005-0329.2004.03.003
    [21] 何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012

    HE W, XUE W D, TANG B. Optimize experiment design method and data analysis[M]. Beijing: Chemical industry press, 2012 (in Chinese)
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  47
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回