留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强噪声下碳纤维复合材料疲劳损伤概率成像方法研究

孔琼英 邓为权

孔琼英,邓为权. 强噪声下碳纤维复合材料疲劳损伤概率成像方法研究[J]. 机械科学与技术,2022,41(9):1450-1457 doi: 10.13433/j.cnki.1003-8728.20200492
引用本文: 孔琼英,邓为权. 强噪声下碳纤维复合材料疲劳损伤概率成像方法研究[J]. 机械科学与技术,2022,41(9):1450-1457 doi: 10.13433/j.cnki.1003-8728.20200492
KONG Qiongying, DENG Weiquan. Probability-based Diagnostic Imaging Method of Fatigue Damage for Carbon Fiber Composite Structures under Strong Noise Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1450-1457. doi: 10.13433/j.cnki.1003-8728.20200492
Citation: KONG Qiongying, DENG Weiquan. Probability-based Diagnostic Imaging Method of Fatigue Damage for Carbon Fiber Composite Structures under Strong Noise Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1450-1457. doi: 10.13433/j.cnki.1003-8728.20200492

强噪声下碳纤维复合材料疲劳损伤概率成像方法研究

doi: 10.13433/j.cnki.1003-8728.20200492
详细信息
    作者简介:

    孔琼英(1994−),硕士研究生,研究方向为结构健康监测,310345884@qq.com

    通讯作者:

    邓为权,讲师,博士, weiquan.deng@kust.edu.cn

  • 中图分类号: V214.8;TP206+.1

Probability-based Diagnostic Imaging Method of Fatigue Damage for Carbon Fiber Composite Structures under Strong Noise Environment

  • 摘要: 基于主动Lamb波的结构健康监测方法在实际应用中受结构振动、服役环境强噪声等干扰,使得损伤定位不准确。针对上述问题,提出了一种在强噪声背景下基于改进损伤因子的碳纤维复合材料疲劳损伤概率成像方法。本文方法利用局部加权散点平滑(Locally weighted scatterplot smoothing,LOWESS)算法对经希尔伯特变换(Hilbert transform,HT)后的含噪信号包络进行平滑处理,获得每条传感通道的飞行时间(Time of flight,ToF);然后根据有无损伤情况下的ToF获得改进的损伤因子,并结合损伤概率成像方法实现碳纤维复合材料板内部疲劳损伤定位成像。实验结果表明,在强噪声环境下本文方法能够有效定位结构内部疲劳损伤,提高损伤定位准确性,且本文方法的损伤定位误差较现有损伤概率成像方法误差至少降低了63.7%。
  • 图  1  试件示意图和实物图

    图  2  激励信号的时域、频域图

    图  3  路径1~8的损伤散射信号及其HT变换包络

    图  4  加入SNR=3 dB的高斯白噪声的信号图

    图  5  加入SNR=0.1 dB的高斯白噪声的信号图

    图  6  加入信噪比SNR为−3 dB的高斯白噪声的信号图

    图  7  X射线图

    图  8  加入信噪比SNR为3 dB、0.1 dB、−3 dB的强噪声后现有损伤概率成像结果

    图  9  加入信噪比SNR为3 dB、0.1 dB、−3 dB的强噪声后改进损伤概率成像结果

    图  10  加入信噪比SNR为3 dB、0.1 dB、−3 dB的强噪声且阈值为0.75的现有损伤概率成像结果

    图  11  加入信噪比SNR为3 dB、0.1 dB、−3 dB的强噪声且阈值为0.75的改进损伤概率成像结果

    表  1  图1中各压电传感器的位置坐标

    PZT编号 坐标/mm PZT编号 坐标/mm
    1 (128,202.5) 7 (25, 51)
    2 (109,202.5) 8 (44, 51)
    3 (90,202.5) 9 (63, 51)
    4 (64,202.5) 10 (89, 51)
    5 (45,202.5) 11 (108, 51)
    6 (26,202.5) 12 (127, 51)
    下载: 导出CSV

    表  2  不同方法峰值对应采样点

    未加噪 SNR/dB HT 误差 LOWESS 误差
    995 3 1033 38 992 3
    995 0.1 1050 55 995 0
    995 −3 940 55 998 3
    下载: 导出CSV

    表  3  损伤概率成像结果

    SNR/dB 现有损伤概率
    成像方法/cm2
    误差E1 改进损伤概率
    成像方法/cm2
    误差E2 $\left(1-\dfrac{E_2}{E_1}\right) \times 100 \text{%}$
    3 65.65 2.52 34.30 0.84 66.67%
    0.1 70.95 2.81 37.59 1.02 63.7%
    −3 73.32 2.94 36.12 0.94 68.03%
    下载: 导出CSV
  • [1] GIBSON R F. A review of recent research on mechanics of multifunctional composite materials and structures[J]. Composite Structures, 2010, 92(12): 2793-2810 doi: 10.1016/j.compstruct.2010.05.003
    [2] GOMES G F, MENDÉZ Y A D, DA SILVA LOPES ALEXANDRINO P, et al. The use of intelligent computational tools for damage detection and identification with an emphasis on composites - a review[J]. Composite Structures, 2018, 196: 44-54 doi: 10.1016/j.compstruct.2018.05.002
    [3] 拉卡德·本顿·贺斯勒赫斯特. 复合材料与结构的缺陷和损伤[M]. 张晓军, 张玮, 张有宏, 译. 北京: 国防工业出版社, 2017

    HESLEHURST R B. Defects and damage in composite materials and structures[M]. ZHANG X J, ZHANG W, ZHANG Y H, trans. Beijing: National Defense Industry Press, 2017 (in Chinese)
    [4] 杨伟博, 袁慎芳, 邱雷, 等. 基于辅助粒子滤波的疲劳裂纹扩展预测研究[J]. 振动与冲击, 2018, 37(5): 114-119,125

    YANG W B, YUAN S F, QIU L, et al. Prediction of fatigue crack propagation based on auxiliary particle filtering[J]. Journal of Vibration and Shock, 2018, 37(5): 114-119,125 (in Chinese)
    [5] 朱林, 陈敏, 贾民平. 基于贝叶斯理论的结构件健康状态评估方法研究[J]. 振动与冲击, 2020, 39(6): 59-63,88

    ZHU L, CHEN M, JIA M P. Approach for structural health assessment based on the Bayesian theory[J]. Journal of Vibration and Shock, 2020, 39(6): 59-63,88 (in Chinese)
    [6] 陈雪峰, 杨志勃, 田绍华, 等. 复合材料结构损伤识别与健康监测展望[J]. 振动、测试与诊断, 2018, 38(1): 1-10

    CHEN X F, YANG Z B, TIAN S H, et al. A review of the damage detection and health monitoring for composite structures[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 1-10 (in Chinese)
    [7] XU C B, YANG Z B, TIAN S H, et al. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum[J]. Composite Structures, 2019, 223: 110973 doi: 10.1016/j.compstruct.2019.110973
    [8] HUANG L P, ZENG L, LIN J, et al. An improved time reversal method for diagnostics of composite plates using Lamb waves[J]. Composite Structures, 2018, 190: 10-19 doi: 10.1016/j.compstruct.2018.01.096
    [9] 孙亚杰, 高艺, 薛瑶环, 等. 相控阵超声监测成像与直方图匹配图像增强实验研究[J]. 传感技术学报, 2015, 28(1): 86-92 doi: 10.3969/j.issn.1004-1699.2015.01.016

    SUN Y J, GAO Y, XUE Y H, et al. Experimental research on phased array ultrasonic monitoring imaging and histogram matching based image enhancement[J]. Chinese Journal of Sensors and Actuators, 2015, 28(1): 86-92 (in Chinese) doi: 10.3969/j.issn.1004-1699.2015.01.016
    [10] 孙亚杰, 姜剑, 张永宏. 基于模糊集的相控阵超声监测成像图像增强研究[J]. 传感技术学报, 2014, 27(11): 1522-1526 doi: 10.3969/j.issn.1004-1699.2014.11.015

    SUN Y J, JIANG J, ZHANG Y H. Research on phased array ultrasonic damage detection and fuzzy sets based image enhancement[J]. Chinese Journal of Sensors and Actuators, 2014, 27(11): 1522-1526 (in Chinese) doi: 10.3969/j.issn.1004-1699.2014.11.015
    [11] 鲍峤, 邱雷, 袁慎芳. 飞行器结构健康监测中压电-导波成像技术的发展与挑战[J]. 航空科学技术, 2020, 31(3): 15-33

    BAO Q, QIU L, YUAN S F. Development and challenges of PZT-guided wave based imaging technique in aircraft structural health monitoring[J]. Aeronautical Science & Technology, 2020, 31(3): 15-33 (in Chinese)
    [12] 陆希, 孟光, 李富才. 基于Lamb波的薄壁槽状结构损伤检测研究[J]. 振动与冲击, 2012, 31(12): 63-67

    LU X, MENG G, LI F C. Lamb wave-based damage detection for a channel-like thin-wall structure[J]. Journal of Vibration and Shock, 2012, 31(12): 63-67 (in Chinese)
    [13] 李静, 陈晓. 基于自适应阈值正交小波变换兰姆波去噪方法[J]. 信息技术, 2012, 36(3): 56-59,64 doi: 10.3969/j.issn.1009-2552.2012.03.018

    LI J, CHEN X. Adaptive threshold Lamb wave denoising algorithm based on orthogonal wavelet transform[J]. Information Technology, 2012, 36(3): 56-59,64 (in Chinese) doi: 10.3969/j.issn.1009-2552.2012.03.018
    [14] LU S Z, JIANG M S, SUI Q M, et al. Low velocity impact localization system of CFRP using fiber Bragg grating sensors[J]. Optical Fiber Technology, 2015, 21: 13-19 doi: 10.1016/j.yofte.2014.07.003
    [15] 苏晨辉, 姜明顺, 梁建英, 等. 强噪声下碳纤维增强树脂复合材料结构Lamb波层析损伤成像方法[J]. 复合材料学报, 2020, 37(4): 886-895

    SU C H, JIANG M S, LIANG J Y, et al. Lamb wave tomography damage imaging of carbon fiber reinforced polymer composite structures in strong noise environment[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 886-895 (in Chinese)
    [16] 付继华, 王旭, 李智涛, 等. 强噪声环境下基于信噪比的地震P波到时自动提取方法[J]. 地球物理学报, 2019, 62(4): 1405-1412 doi: 10.6038/cjg2019L0745

    FU J H, WANG X, LI Z T, et al. Automatic picking up earthquake's P waves using signal-to-noise ratio under a strong noise environment[J]. Chinese Journal of Geophysics, 2019, 62(4): 1405-1412 (in Chinese) doi: 10.6038/cjg2019L0745
    [17] CLEVELAND W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829-836 doi: 10.1080/01621459.1979.10481038
    [18] SAXENA A, GOEBEL K, LARROSA C, et al. CFRP composites data set[R]. NASA Ames Prognostics Data Repository. Moffett Field, CA: NASA Ames Research Center, 2008.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  95
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回