留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电主轴参数化及结合响应面法的多目标优化

王洪申 连亚东 黄忠金

王洪申,连亚东,黄忠金. 电主轴参数化及结合响应面法的多目标优化[J]. 机械科学与技术,2022,41(9):1403-1408 doi: 10.13433/j.cnki.1003-8728.20200490
引用本文: 王洪申,连亚东,黄忠金. 电主轴参数化及结合响应面法的多目标优化[J]. 机械科学与技术,2022,41(9):1403-1408 doi: 10.13433/j.cnki.1003-8728.20200490
WANG Hongshen, LIAN Yadong, HUANG Zhongjin. Parameterization of Motorized Spindle and Multi-objective Optimization Combined with Response Surface Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1403-1408. doi: 10.13433/j.cnki.1003-8728.20200490
Citation: WANG Hongshen, LIAN Yadong, HUANG Zhongjin. Parameterization of Motorized Spindle and Multi-objective Optimization Combined with Response Surface Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1403-1408. doi: 10.13433/j.cnki.1003-8728.20200490

电主轴参数化及结合响应面法的多目标优化

doi: 10.13433/j.cnki.1003-8728.20200490
基金项目: 国家自然科学基金项目(61962035)
详细信息
    作者简介:

    王洪申(1969−),教授,硕士生导师,研究方向为数字化设计与制造,Whs_1989@126.com

  • 中图分类号: TH16;TH133.2

Parameterization of Motorized Spindle and Multi-objective Optimization Combined with Response Surface Method

  • 摘要: 以某电主轴为对象,通过Solidworks对模型进行二次建模,导入到Workbench中并进行参数化传递。在完成静态和模态有限元分析的基础上,以电主轴的前后轴承组跨距、悬伸量、主轴前端半径、前端内孔半径为设计变量,以最大总体变形最小、1阶固有频率最大、质量最轻为优化目标,对设计参数进行敏感性分析,建立响应面优化模型并进行优化分析。优化结果表明,采用上述方法进行优化后,其静刚度提高了4.2%,1阶固有频率增大了7.4%,质量减少了5.3%,达到了最初的优化目的。
  • 图  1  电主轴实体简化模型

    图  2  主轴参数化模型

    图  3  主轴静态变形图

    图  4  敏感性分析

    图  5  响应曲面

    图  6  Goodness of Fit拟合曲线

    图  7  3个输出参数的Tradeoff图

    表  1  尺寸参数、初始值及变化范围 mm

    名称 轴承跨距L1 悬伸量L2 前端外半径D1 前端内半径D2
    初始值 361.5 114 35 27
    上限值 397.65 125.4 38.5 29.7
    下限值 325.35 102.6 31.5 24.3
    下载: 导出CSV

    表  2  前6阶固有频率、振型及临界转速

    阶数 固有频率/Hz 振型 临界转速/(r·min−1
    1 1048.7 弯曲 62922
    2 1048.8 弯曲 62928
    3 1876.4 摆动 112584
    4 1876.8 摆动 112608
    5 2668.3 扭转 160098
    6 2668.5 扭转 160110
    下载: 导出CSV

    表  3  优化后的3组候选点

    参数名称 第1组 第2组 第3组
    轴承跨距P1/mm 381.93 361.53 397.38
    悬伸量P2/mm 110.79 105.43 107.34
    前端外半径P3/mm 32.725 32.764 32.902
    前端内半径P4/mm 19.823 19.837 19.822
    主轴前端变形量P6/μm 0.8477 0.84895 0.83836
    1阶固有频率P7/Hz 1057.4 1057.2 1056.5
    质量P8/kg 9.2346 9.2446 9.2823
    下载: 导出CSV
  • [1] KAMBLE P D, WAGHMARE A C, ASKHEDKAR R D, et al. Multi objective optimization of turning parameters considering spindle vibration by hybrid Taguchi principal component analysis (HTPCA)[J]. Materials Today:Proceedings, 2017, 4(2): 2077-2084 doi: 10.1016/j.matpr.2017.02.053
    [2] 郭维祺, 刘桂萍, 毛文贵. 高速静压内置式电主轴系统稳定性分析及优化[J]. 振动与冲击, 2015, 34(6): 101-105

    GUO W Q, LIU G P, MAO W G. Stability analysis and optimization for a high-speed built-in motorized hydrostatic spindle system[J]. Journal of Vibration and Shock, 2015, 34(6): 101-105 (in Chinese)
    [3] 闫如忠, 梁凯. 响应面法在主轴模态可靠性分析中的应用[J]. 机械设计与制造, 2018(S1): 86-89

    YAN R Z, LIANG K. Application of response surface method in modal reliability analysis of spindle[J]. Machinery Design & Manufacture, 2018(S1): 86-89 (in Chinese)
    [4] LIN S Y. Simultaneous optimal design of parameters and tolerance of bearing locations for high-speed machine tools using a genetic algorithm and Monte Carlo simulation method[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(11): 1983-1988 doi: 10.1007/s12541-012-0261-6
    [5] JIANG S Y, ZHENG S F. A modeling approach for analysis and improvement of spindle-drawbar- bearing assembly dynamics[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1): 131-142 doi: 10.1016/j.ijmachtools.2009.08.010
    [6] LIN C W. Optimization of bearing locations for maximizing first mode natural frequency of motorized spindle-bearing systems using a genetic algorithm[J]. Applied Mathematics, 2014, 5(14): 2137-2152 doi: 10.4236/am.2014.514208
    [7] 徐磊, 赵丽梅, 张成. 高液静压无心磨床砂轮主轴的优化设计研究[J]. 组合机床与自动化加工技术, 2020(9): 29-32

    XU L, ZHAO L M, ZHANG C. Study on optimization design of grinding wheel spindle of high hydrostatic pressure centerless grinder[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(9): 29-32 (in Chinese)
    [8] 孟曙光, 熊万里, 王少力, 等. 有限体积法与正交试验法相结合的动静压轴承结构优化设计[J]. 中国机械工程, 2016, 27(9): 1234-1242 doi: 10.3969/j.issn.1004-132X.2016.09.016

    MENG S G, XIONG W L, WANG S L, et al. Structure optimization design of hydrostatic dynamic journal combined finite volume method with orthogonal experimental design method[J]. China Mechanical Engineering, 2016, 27(9): 1234-1242 (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.09.016
    [9] 商远杰, 林建中, 刘献军, 等. 静压轴承对电主轴转子系统动态特性的影响分析[J]. 机械科学与技术, 2015, 34(5): 688-693

    SHANG Y J, LIN J Z, LIU X J, et al. Impact of hydrostatic bearings on the dynamic performance of electric spindle rotor device[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5): 688-693 (in Chinese)
    [10] 戴曙. 机床滚动轴承应用手册[M]. 北京: 机械工业出版社, 1993

    DAI S. Application manual of rolling bearings for machine tools[M]. Beijing: China Machine Press, 1993 (in Chinese)
    [11] 李红光. 滚动轴承预紧的意义和预紧力的估算及调整[J]. 机械制造, 2004, 42(9): 45-48 doi: 10.3969/j.issn.1000-4998.2004.09.015

    LI H G. Importance of preloading of rolling bearings and estimation and adjustment of preload[J]. Machinery, 2004, 42(9): 45-48 (in Chinese) doi: 10.3969/j.issn.1000-4998.2004.09.015
    [12] 于天彪, 王学智, 关鹏, 等. 超高速磨削机床主轴系统模态分析[J]. 机械工程学报, 2012, 48(17): 183-188 doi: 10.3901/JME.2012.12.183

    YU T B, WANG X Z, GUAN P, et al. Modal analysis of spindle system on ultra-high speed grinder[J]. Journal of Mechanical Engineering, 2012, 48(17): 183-188 (in Chinese) doi: 10.3901/JME.2012.12.183
    [13] 季枫, 王登峰, 陈书明, 等. 轿车白车身隐式全参数化建模与多目标轻量化优化[J]. 汽车工程, 2014, 36(2): 254-258 doi: 10.3969/j.issn.1000-680X.2014.02.023

    JI F, WANG D F, CHEN S M, et al. Implicit parameterization modeling and multi-objective lightweight optimization for a car's body-in-white[J]. Automotive Engineering, 2014, 36(2): 254-258 (in Chinese) doi: 10.3969/j.issn.1000-680X.2014.02.023
    [14] 刘承杰, 罗鹏, 赵磊, 等. 基于ANSYS Workbench曲柄销轴的优化设计[J]. 应用力学学报, 2017, 34(6): 1140-1144

    LIU C J, LUO P, ZHAO L, et al. Optimal design of crank pin based on ANSYS Workbench[J]. Chinese Journal of Applied Mechanics, 2017, 34(6): 1140-1144 (in Chinese)
    [15] 柴山, 尚晓江, 刚宪约. 工程结构优化设计方法与应用[M]. 北京: 中国铁道出版社, 2015

    CHAI S, SHANG X J, GANG X Y. Engineering structure optimization design method and application[M]. Beijing: China Railway Publishing House, 2015 (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  164
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回