留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽雾冷却下切削GH4169切削温度仿真与试验分析

冯新敏 董庆尚 胡景姝 王柏惠

冯新敏, 董庆尚, 胡景姝, 王柏惠. 汽雾冷却下切削GH4169切削温度仿真与试验分析[J]. 机械科学与技术, 2022, 41(7): 985-991. doi: 10.13433/j.cnki.1003-8728.20200421
引用本文: 冯新敏, 董庆尚, 胡景姝, 王柏惠. 汽雾冷却下切削GH4169切削温度仿真与试验分析[J]. 机械科学与技术, 2022, 41(7): 985-991. doi: 10.13433/j.cnki.1003-8728.20200421
FENG Xinmin, DONG Qingshang, HU Jingshu, WANG Baihui. Simulation and Experimental Analysis of Cutting Temperature in Cutting of Superalloy GH4169 under Spray[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 985-991. doi: 10.13433/j.cnki.1003-8728.20200421
Citation: FENG Xinmin, DONG Qingshang, HU Jingshu, WANG Baihui. Simulation and Experimental Analysis of Cutting Temperature in Cutting of Superalloy GH4169 under Spray[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 985-991. doi: 10.13433/j.cnki.1003-8728.20200421

汽雾冷却下切削GH4169切削温度仿真与试验分析

doi: 10.13433/j.cnki.1003-8728.20200421
基金项目: 

国家自然科学基金项目 51675144

详细信息
    作者简介:

    冯新敏(1973-), 博士, 研究方向为刀具设计及材料加工性能研究, hrbfxmgp@163.com

  • 中图分类号: TG501.5

Simulation and Experimental Analysis of Cutting Temperature in Cutting of Superalloy GH4169 under Spray

  • 摘要: 为了研究汽雾冷却下切削GH4169的冷却效果, 本文对汽雾冷却条件下切削GH4169的切削温度进行了试验和仿真分析。首先使用热电偶测温并采用导热反求法将热电偶测得的温度转化为实际的切削温度, 分析干切削和汽雾冷却下切削温度的变化情况。其次建立了汽雾冷却仿真模型, 设置与试验相同的切削参数进行仿真计算, 分析不同汽雾参数对切削温度的影响及产生这一影响的原因。分析得出汽雾冷却能够明显的降低切削温度; 切削温度随着压力参数的增大下降明显, 随着流量参数的增大无明显的变化。
  • 图  1  试验流程图

    图  2  刀片测温点盲孔加及热电偶安装

    图  3  测量位置图

    图  4  导热反求法流程图

    图  5  传热模型

    图  6  刀片温度变化云图

    图  7  仿真切削温度

    图  8  汽雾冷却三维模型

    图  9  整体网格划分

    图  10  局部细化后的刀尖处网格

    图  11  颗粒速度云图

    图  12  刀尖温度云图

    图  13  不同流量下切削温度变化曲线

    图  14  不同压力下切削温度变化曲线

    图  15  不同流量下试验和仿真切削温度对比

    图  16  不同压力下试验和仿真切削温度对比

    表  1  硬质合金材料属性

    导热系数/ (W·(m·℃)-1) 密度/ (kg·m-3) 比热容/ (J·(kg·℃)-1)
    71 15 600 452
    下载: 导出CSV

    表  2  传热结果

    序号 切削温度/℃ 测量温度/℃
    1 200 123.98
    2 250 167.47
    3 300 214.97
    下载: 导出CSV

    表  3  试验参数及试验、仿真结果

    序号 汽雾压力/MPa 汽雾流量/(L·h-1) 热电偶温度/℃ 试验切削温度/℃ 仿真切削温度/℃
    1 0.2 1.58 52 123.18 114.65
    2 0.2 2.37 47 117.89 114.64
    3 0.2 3.16 50 121.06 114.64
    4 0.1 2.37 67 139.12 118.51
    5 0.2 2.37 49 120.01 114.64
    6 0.3 2.37 43 113.66 118.83
    7 - - 136 213.71 197.00
    下载: 导出CSV
  • [1] 吴明阳, 赵旭, 陈勇, 等. 高压冷却下PCBN刀具切削高温合金切屑卷曲折断机理及试验研究[J]. 机械工程学报, 2017, 53(9): 187-192 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201709022.htm

    WU M Y, ZHAO X, CHEN Y, et al. Reaserch on mechanism and experimental of chip breaking during high pressure cooling turning of superalloys with PCBN tool[J]. Journal of Mechanical Engineering, 2017, 53(9): 187-192 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201709022.htm
    [2] 淮文博, 史耀耀, 杜宇寅, 等. GH4169叶片表面粗糙度和残余应力的砂布轮抛光工艺参数区间优选[J]. 机械科学与技术, 2021, 40(5): 721-726 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202105011.htm

    HUAI W B, SHI Y Y, DU Y Y, et al. Optimization of polishing process parameters for surface roughness and residual stress of GH4169 blade with abrasive cloth wheel[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 721-726 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202105011.htm
    [3] 刘维伟, 李晓燕, 万旭生, 等. GH4169高速车削参数对加工表面完整性影响研究[J]. 机械科学与技术, 2013, 32(8): 1093-1097 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201308002.htm

    LIU W W, LI X Y, WAN X S, et al. The effects of turning parameters on machining surface integrity in high speed turning GH4169[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(8): 1093-1097 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201308002.htm
    [4] 计亚坤, 胡景姝, 冯新敏, 等. 汽雾冷却下高速切削GH4169切削力和粗糙度试验分析[J]. 工具技术, 2018, 52(12): 71-75 doi: 10.3969/j.issn.1000-7008.2018.12.028

    JI Y K, HU J S, FENG X M, et al. Experimental analysis of cutting force and rRughness of high speed cutting GH4169 under steam cooling[J]. Tool Engineering, 2018, 52(12): 71-75 (in Chinese) doi: 10.3969/j.issn.1000-7008.2018.12.028
    [5] 赵欢欢, 刘业凤, 张华, 等. 低温冷风微量润滑加工技术的研究状况[C]//第六届全国制冷空调新技术研讨会论文集全制会武汉: 中国制冷学会, 2010

    ZHAO H H, LIU Y F, ZHANG H, et al. The study on cooling-air minimal quantity lubrication[C]//National Symposium on New Technologies of Refrigeration and Air Conditioning. Wuhan: China Refrigeration Society, 2010 (in Chinese)
    [6] 彭锐涛, 降皓鉴, 唐新姿, 等. 定向内冷车刀及其切削性能[J]. 中国机械工程, 2019, 30(21): 2629-2635, 2642 doi: 10.3969/j.issn.1004-132X.2019.21.017

    PENG Y T, JIANG H J, TANG X Z, et al. Directional internal-cooling tools and their machining performances[J]. China Mechanical Engineering, 2019, 30(21): 2629-2635, 2642 (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.21.017
    [7] RAHMAN M, KUMAR A S, SALAM M U. Experimental evaluation on the effect of minimal quantities of lubricant in milling[J]. International Journal of Machine Tools and Manufacture, 2002, 42(5): 539-547 doi: 10.1016/S0890-6955(01)00160-2
    [8] POLVOROSA R, SUÁREZ A, DE LACALLE L N L, et al. Tool wear on nickel alloys with different coolant pressures: comparison of alloy 718 and Waspaloy[J]. Journal of Manufacturing Processes, 2017, 26: 44-56 doi: 10.1016/j.jmapro.2017.01.012
    [9] MUSAVI S H, DAVOODI B, NIKNAM S A. Effects of reinforced nanofluid with nanoparticles on cutting tool wear morphology[J]. Journal of Central South University, 2019, 26(5): 1050-1064 doi: 10.1007/s11771-019-4070-2
    [10] BEHERA B C, ALEMAYEHU H, GHOSH S, et al. A comparative study of recent lubri-coolant strategies for turning of Ni-based superalloy[J]. Journal of Manufacturing Processes, 2017, 30: 541-552 doi: 10.1016/j.jmapro.2017.10.027
    [11] KIM J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767 doi: 10.1016/j.ijheatfluidflow.2006.09.003
    [12] 何立东, 闫通海, 王凡. 气液两相流体润滑机理的试验研究[J]. 润滑与密封, 1996(1): 33-36 https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF199601011.htm

    HE L D, YAN T H, WANG F. Experimental study on lubrication mechanism of bubbly liquid[J]. Lubrication Engineering, 1996(1): 33-36 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF199601011.htm
    [13] 战国宸, 闫通海, 弓海霞. 气液两相流体冷却技术应用的研究[J]. 应用科技, 2001, 28(7): 1-3 doi: 10.3969/j.issn.1009-671X.2001.07.001

    ZHAN G C, YAN T H, GONG H X. Study of the application of bubbly oil cooling-technology[J]. Applied Science and Technology, 2001, 28(7): 1-3 (in Chinese) doi: 10.3969/j.issn.1009-671X.2001.07.001
    [14] 陈德成, 铃木康夫, 酒井克彦. 复合喷雾加工法在切削加工过程中的冷却和润滑效果[J]. 中国机械工程, 2000, 11(9): 1035-1038 doi: 10.3321/j.issn:1004-132X.2000.09.022

    CHEN D C, SUZUKI Y, SAKAI K. The effect of cooling and lubrication of oil-water combined mist cutting method in turning operation[J]. China Mechanical Engineering, 2000, 11(9): 1035-1038 (in Chinese) doi: 10.3321/j.issn:1004-132X.2000.09.022
    [15] 张京京, 冯平法, 吴志军, 等. 一种借助有限元传热仿真的刀尖点切削温度精确测量方法[J]. 工具技术, 2010, 44(1): 85-88 https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201001033.htm

    ZHANG J J, FENG P F, WU Z J, et al. Method of precisely measuring tool nose temperature in machining with help of FEM heat transfer analysis[J]. Tool Engineering, 2010, 44(1): 85-88 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201001033.htm
    [16] 丁欣硕, 刘斌. Fluent 17.0流体仿真从入门到精通[M]. 北京: 清华大学出版社, 2018

    DING X S, LIU B. Fluent 17.0 fluid simulation form introduction to mastery[M]. Beijing: Tsinghua University Press, 2018 (in Chinese)
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  39
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回