留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

势能代价PRM算法的机械臂避障路径规划研究

张许有 刘有余

张许有,刘有余. 势能代价PRM算法的机械臂避障路径规划研究[J]. 机械科学与技术,2022,41(4):552-558 doi: 10.13433/j.cnki.1003-8728.20200400
引用本文: 张许有,刘有余. 势能代价PRM算法的机械臂避障路径规划研究[J]. 机械科学与技术,2022,41(4):552-558 doi: 10.13433/j.cnki.1003-8728.20200400
ZHANG Xuyou, LIU Youyu. Research on Obstacle Avoidance Path Planning of Manipulators using Potential Energy Cost PRM Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 552-558. doi: 10.13433/j.cnki.1003-8728.20200400
Citation: ZHANG Xuyou, LIU Youyu. Research on Obstacle Avoidance Path Planning of Manipulators using Potential Energy Cost PRM Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 552-558. doi: 10.13433/j.cnki.1003-8728.20200400

势能代价PRM算法的机械臂避障路径规划研究

doi: 10.13433/j.cnki.1003-8728.20200400
基金项目: 安徽高校协同创新项目(GXXT-2019-048)
详细信息
    作者简介:

    张许有(1995−),硕士研究生,研究方向为机器人感知与控制,1958976710@qq.com

    通讯作者:

    刘有余,教授,硕士生导师,liuyoyu1@163.com

  • 中图分类号: TP241.2

Research on Obstacle Avoidance Path Planning of Manipulators using Potential Energy Cost PRM Algorithm

  • 摘要: 为了提高概率地图算法(Probabilistic roadmap method,PRM)规划结果的质量,提出势能代价PRM算法,将其应用于机械臂避障路径规划。建立规划空间任意节点的势能评价标准;定义困难区域节点,研究基于Metropolis准则的障碍空间节点调整策略;建立机械臂连杆的势能函数;给出机械臂任意位姿间的安全路径检查方法。仿真测试表明:性能方面,提出算法的规划质量和规划时间均优于PRM、OBPRM、高斯采样PRM算法;机械臂避障路径规划方面,提出算法的规划质量显著优于PRM算法,在规划质量和时间消耗上优于OBPRM和高斯采样PRM算法,且能使机械臂规避所有障碍并到达目标位姿。
  • 图  1  $ \angle {{\boldsymbol{O}}_k}{{\boldsymbol{\alpha}} _j}({\boldsymbol{q}}){{\boldsymbol{\beta}} _j}({\boldsymbol{q}})$$\angle {{\boldsymbol{O}}_k}{{\boldsymbol{\beta}} _j}({\boldsymbol{q}}){{\boldsymbol{\alpha}} _j}({\boldsymbol{q}})$均小于90°

    图  2  $\angle {{\boldsymbol{O}}_k}{{\boldsymbol{\alpha}} _j}({\boldsymbol{q}}){{\boldsymbol{\beta}} _j}({\boldsymbol{q}})$$\angle {{\boldsymbol{O}}_k}{{\boldsymbol{\beta}} _j}({\boldsymbol{q}}){{\boldsymbol{\alpha}} _j}({\boldsymbol{q}})$有一角大于90°

    图  3  环境1下4种算法的采样及规划情况

    图  4  环境2下4种算法的采样及规划情况

    图  5  环境3下4种算法的采样及规划情况

    图  6  提出算法在环境1下的规划情况

    图  7  提出算法在环境2下的规划情况

    图  8  提出算法在环境3下的规划情况

    图  9  提出算法在环境4下的规划情况

    表  1  算法的参数设置

    算法自由空间
    采点数
    安全距离s邻节点距离
    限制d
    起始点目标点T$ \sigma $U$ \eta $$ \lambda $高斯采样的
    标准差
    PRM 400 0.1 2.5 (1,2) (18,18)
    势能代价 PRM 1 2 4 2 8000
    高斯采样 PRM 4
    OBPRM
    下载: 导出CSV

    表  2  算法的SUCSt

    规划环境算法评价指标
    SUC/%St/s
    环境1
    图3
    PRM 25 26.8812 2.3970
    势能代价 PRM 100 24.9497 2.2932
    高斯采样 PRM 85 26.0664 2.6305
    OBPRM 85 25.6786 2.4634
    环境2
    图4
    PRM 20 27.5589 2.5760
    势能代价 PRM 100 25.0830 2.3670
    高斯采样 PRM 80 26.4508 2.7993
    OBPRM 75 26.2120 2.6463
    环境3
    图5
    PRM 70 27.3970 3.2201
    势能代价 PRM 100 25.1934 3.0808
    高斯采样 PRM 100 26.2283 3.4381
    OBPRM 95 26.4872 3.4242
    下载: 导出CSV

    表  3  KR5机械臂D-H参数

    连杆jqj/(°)dj/maj-1/mαj-1/(°)
    1 [−180,180] 0.4000 0.1800 90
    2 [−180,180] 0.1350 0.6000 180
    3 [−180,180] 0.1350 0.1200 −90
    4 [−180,180] 0.6200 0 90
    5 [−180,180] 0 0 −90
    6 [−180,180] 0 0 0
    下载: 导出CSV

    表  4  算法的参数设置

    算法自由空间
    采点数
    安全
    距离s
    连杆
    半径
    阈值E邻节点距
    离限制 d
    起始位姿目标位姿T$ \sigma $U$ \eta $$ \lambda $高斯采样
    的标准差
    PRM 1000 0.03 m 0.06 m 16° 32° [0°,30°,−20°,
    20°,40°,0°]
    [130°,40°,−50°,
    50°,50°,0°]
    势能代价PRM 1 0.1 m 3 0.1 4000
    高斯采样PRM 10
    OBPRM
    下载: 导出CSV

    表  5  算法的SUCSt均值

    规划环境算法评价指标
    SUC/%St/s
    环境1
    图6
    PRM 5 149.3212 12.1450
    势能代价 PRM 100 140.9779 27.5040
    高斯采样 PRM 100 150.9876 64.1363
    OBPRM 30 147.8766 40.4497
    环境2
    图7
    PRM 15 148.1819 12.1820
    势能代价 PRM 100 141.6972 28.3279
    高斯采样 PRM 100 148.8181 65.0375
    OBPRM 55 147.0001 41.9689
    环境3
    图8
    PRM 0
    势能代价 PRM 100 141.0630 33.2550
    高斯采样 PRM 90 158.5556 89.9397
    OBPRM 0
    环境4
    图9
    PRM 0
    势能代价 PRM 100 139.7262 37.9871
    高斯采样 PRM 100 151.3292 90.2518
    OBPRM 0
    下载: 导出CSV
  • [1] 贾庆轩, 陈钢, 孙汉旭, 等. 基于A*算法的空间机械臂避障路径规划[J]. 机械工程学报, 2010, 46(13): 109-115 doi: 10.3901/JME.2010.13.109

    JIA Q X, CHEN G, SUN H X, et al. Path planning for space manipulator to avoid obstacle based on A* algorithm[J]. Journal of Mechanical Engineering, 2010, 46(13): 109-115 (in Chinese) doi: 10.3901/JME.2010.13.109
    [2] WANG S K, ZHU L. Motion planning method for obstacle avoidance of 6-dof manipulator based on improved A* algorithm[J]. Journal of Donghua University, 2015, 32(1): 79-85
    [3] WANG W R, ZHU M C, WANG X M, et al. An improved artificial potential field method of trajectory planning and obstacle avoidance for redundant manipulators[J]. International Journal of Advanced Robotic Systems, 2018, 15(5),doi: 10.1177/1729881418799562
    [4] 钱堃, 贾凯, 宋潇. 基于低维映射和Q学习的机械臂避碰规划算法[J]. 华中科技大学学报(自然科学版), 2015, 43(SI): 468-472

    QIAN K, JIA K, SONG X. Robot manipulator avoidance planning based on low-dimensional mapping and Q-learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(SI): 468-472 (in Chinese)
    [5] 徐帷, 卢山. 基于Sarsa(λ)强化学习的空间机械臂路径规划研究[J]. 宇航学报, 2019, 40(4): 435-443

    XU W, LU S. Analysis of space manipulator route planning based on Sarsa (λ) reinforcement learning[J]. Journal of Astronautics, 2019, 40(4): 435-443 (in Chinese)
    [6] WEI K, REN B Y. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm[J]. Sensors, 2018, 18(2): 571 doi: 10.3390/s18020571
    [7] CAO X M, ZOU X J, JIA C Y, et al. RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and Electronics in Agriculture, 2019, 156: 105-118 doi: 10.1016/j.compag.2018.10.031
    [8] KAVRAKI L, LATOMBE J C. Randomized preprocessing of configuration for fast path planning[C]//Proceedings of 1994 IEEE International Conference on Robotics and Automation. San Diego, CA, USA: IEEE, 1994: 2138-2145
    [9] AMATO N M, BAYAZIT O B, DALE L K, et al. OBPRM: an obstacle-based PRM for 3D workspaces[C]//Proceedings of the 3rd Workshop on the Algorithmic Foundations of Robotics on Robotics: the Algorithmic Perspective: the Algorithmic Perspective. Houston, Texas, USA: ACM, 1998: 156-168
    [10] BOOR V, OVERMARS M H, VAN DER STAPPEN A F. The Gaussian sampling strategy for probabilistic roadmap planners[C]//Proceedings of 1999 IEEE International Conference on Robotics and Automation. Detroit, MI, USA: IEEE, 1999: 1018-1023
    [11] HSU D, JIANG T T, REIF J, et al. The bridge test for sampling narrow passages with probabilistic roadmap planners[C]//Proceedings of IEEE 2013 International Conference on Robotics and Automation. Taipei, China: IEEE, 2003: 4420-4426
    [12] 钟建冬, 苏剑波. 基于概率路标的机器人狭窄通道路径规划[J]. 控制与决策, 2010, 25(12): 1831-1836

    ZHONG J D, SU J B. Robot path planning in narrow passage based on probabilistic roadmap method[J]. Control and Decision, 2010, 25(12): 1831-1836 (in Chinese)
    [13] CHEN C, TIONG L K. Using queuing theory and simulated annealing to design the facility layout in an AGV-based modular manufacturing system[J]. International Journal of Production Research, 2019, 57(17): 5538-5555 doi: 10.1080/00207543.2018.1533654
    [14] LIU H S, ZHANG Y, ZHU S Q. Novel inverse kinematic approaches for robot manipulators with Pieper-Criterion based geometry[J]. International Journal of Control, Automation and Systems, 2015, 13(5): 1242-1250 doi: 10.1007/s12555-013-0440-y
    [15] 曹其新, 孙明镜, 薛蔚, 等. 人机协作下机械臂动态避障与避奇异研究[J]. 华中科技大学学报(自然科学版), 2020, 48(1): 55-59,65

    CAO Q X, SUN M J, XUE W, et al. Research on avoidance of dynamic obstacle and singularity for manipulator in human-robot cooperation[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(1): 55-59,65 (in Chinese)
    [16] 冷舒, 吴克, 居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报, 2019, 40(11): 1262-1273

    LENG S, WU K, JU H H. Overview of manipulator kinematics modeling and solving method[J]. Journal of Astronautics, 2019, 40(11): 1262-1273 (in Chinese)
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  55
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-29
  • 录用日期:  2021-12-17
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回