留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下航行器流场特性与辐射噪声数值研究

张卿冕 肖正明

张卿冕, 肖正明. 水下航行器流场特性与辐射噪声数值研究[J]. 机械科学与技术, 2022, 41(6): 833-839. doi: 10.13433/j.cnki.1003-8728.20200390
引用本文: 张卿冕, 肖正明. 水下航行器流场特性与辐射噪声数值研究[J]. 机械科学与技术, 2022, 41(6): 833-839. doi: 10.13433/j.cnki.1003-8728.20200390
ZHANG Qingmian, XIAO Zhengming. Numerical Study of Flow Field Characteristics and Radiation Noise of Underwater Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 833-839. doi: 10.13433/j.cnki.1003-8728.20200390
Citation: ZHANG Qingmian, XIAO Zhengming. Numerical Study of Flow Field Characteristics and Radiation Noise of Underwater Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 833-839. doi: 10.13433/j.cnki.1003-8728.20200390

水下航行器流场特性与辐射噪声数值研究

doi: 10.13433/j.cnki.1003-8728.20200390
基金项目: 

国家自然科学基金项目 51965025

云南省基础研究计划面上项目 202201AT070103

云南省重点研发计划国际科技合作专项项目 202003AF140007

详细信息
    作者简介:

    张卿冕(1993-), 硕士研究生, 研究方向为水动力噪声, 463885023@qq.com

    通讯作者:

    肖正明, 教授, 博士, suzem@sina.com

  • 中图分类号: TJ610

Numerical Study of Flow Field Characteristics and Radiation Noise of Underwater Vehicle

  • 摘要: 为了更好的了解水下航行器的流场特性及辐射噪声的变化规律, 采用SST k-ω模型, 运用流体仿真软件, 提取了水下航行器在3种来流速度工况下的表面压力分布, 总结了阻力系数随时间的变化规律, 推导了航行器鼻端处压力的变化, 仿真得出了航行器在对称面上的速度分布情况。把壁面压力脉动作为偶极子声源, 采用直接边界元法(BEM), 仿真计算得到声压云图和场点声功率级的分布情况。在轴向上安装探测器, 来讨论壳体辐射噪声轴向变化特性。研究结果表明: 来流速度越大, 航行器所受到的阻力和压力都随之增大, 且航行器结构辐射噪声也增大; 声场中距离航行器越近的点, 其声压越大, 且声压在近场区域衰减的速度较快, 通过仿真所得到的航行器辐射噪声的变化规律具有准确性和可行性。
  • 图  1  数值计算模型

    图  2  外流域与边界设置

    图  3  对称面上的网格分布

    图  4  阻力系数

    图  5  不同来流速度下航行器表面压力云图

    图  6  数据点的设置

    图  7  不同来流速度下数据点的压力变化

    图  8  不同水深下数据点的压力变化

    图  9  40 kn时航行器的速度云图

    图  10  外声场边界元模型

    图  11  声压云图

    图  12  不同来流速度下场点声功率级频谱

    图  13  不同水深下面场点声功率级频谱

    图  14  探测器安装位置示意图

    图  15  探测器声压级频谱曲线

    图  16  特征点处的声压值

  • [1] KUMAR A, KARN A. Qualitative and quantitative characterization of a synthetic jet mounted on a convex torpedo-like surface under cross-flow[J]. International Journal of Heat and Fluid Flow, 2018, 74: 198-208 doi: 10.1016/j.ijheatfluidflow.2018.10.003
    [2] HUI L, WANG K M. Torpedo performance Markov model[J]. Expert Systems with Applications, 2015, 42(23): 9129-9136 doi: 10.1016/j.eswa.2015.07.077
    [3] CHI C, PALLAYIL V, CHITRE M. Design of an adaptive noise canceller for improving performance of an autonomous underwater vehicle-towed linear array[J]. Ocean Engineering, 2020, 202: 106886 doi: 10.1016/j.oceaneng.2019.106886
    [4] DENG R, ZHANG Z Z, PANG F Z, et al. REMOVED: investigating the sound power level of a simplified underwater vehicle induced by flow separation[J]. Ocean Engineering, 2020, 204: 107286 doi: 10.1016/j.oceaneng.2020.107286
    [5] 翟朔, 刘志华. 艇尾共翼型舵水动力和尾流场特征的数值计算研究[J]. 中国造船, 2019, 60(1): 109-119 doi: 10.3969/j.issn.1000-4882.2019.01.012

    ZHAI S, LIU Z H. Numerical research on hydrodynamic performance and wake flow of conformal rudder[J]. Shipbuilding of China, 2019, 60(1): 109-119 (in Chinese) doi: 10.3969/j.issn.1000-4882.2019.01.012
    [6] MOGAN S R C, CHEN D, HARTWIG J W, et al. Hydrodynamic analysis and optimization of the Titan submarine via the SPH and Finite-Volume methods[J]. Computers & Fluids, 2018, 174: 271-282
    [7] 张大朋, 白勇, 朱克强, 等. 不同模式下拖缆对水下拖体运动姿态的影响研究[J]. 船舶力学, 2018, 22(8): 967-976 doi: 10.3969/j.issn.1007-7294.2018.08.006

    ZHANG D P, BAI Y, ZHU K Q, et al. Dynamic analysis for towed cable under two different modes[J]. Journal of Ship Mechanics, 2018, 22(8): 967-976 (in Chinese) doi: 10.3969/j.issn.1007-7294.2018.08.006
    [8] 漆小舟, 缪爱琴, 万德成, 等. 水下潜器航行水动力导数CFD计算[J]. 水动力学研究与进展A辑, 2018, 33(3): 297-304 https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201803004.htm

    QI X Z, MIAO A Q, WANG D C, et al. CFD calculation of hydrodynamic derivatives of underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2018, 33(3): 297-304 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201803004.htm
    [9] PAN Y C, ZHANG H X, ZHOU Q D, et al. Numerical prediction of submarine hydrodynamic coefficients using CFD simulation[J]. Journal of Hydrodynamics, 2012, 24(6): 840-847 doi: 10.1016/S1001-6058(11)60311-9
    [10] TESTA C, GRECO L. Prediction of submarine scattered noise by the acoustic analogy[J]. Journal of Sound and Vibration, 2018, 426: 186-218 doi: 10.1016/j.jsv.2018.04.011
    [11] YAO H L, ZHANG H X, LIU H T, et al. Numerical study of flow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method[J]. Engineering Analysis with Boundary Elements, 2017, 77: 1-9 doi: 10.1016/j.enganabound.2016.12.012
    [12] ÖZDEN M C, GVRKAN A Y, ÖZDEN Y A, et al. Underwater radiated noise prediction for a submarine propeller in different flow conditions[J]. Ocean Engineering, 2016, 126: 488-500 doi: 10.1016/j.oceaneng.2016.06.012
    [13] 李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声数值计算方法对比研究[J]. 中国造船, 2017, 58(3): 114-127 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201703012.htm

    LI Q, YANG D Q, YU Y, et al. Comparative study on numerical methods for underwater low-frequency radiation noise of ship[J]. Shipbuilding of China, 2017, 58(3): 114-127 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201703012.htm
    [14] 徐园园, 王明洲, 蒋继军, 等. 基于声散射模型的鱼雷自噪声特性分析及仿真预报[J]. 鱼雷技术, 2013, 21(2): 105-109 https://www.cnki.com.cn/Article/CJFDTOTAL-YLJS201302007.htm

    XU Y Y, WANG M Z, JIANG J J, et al. Characteristic analysis and prediction simulation of torpedo self-noise based on acoustic scattering model[J]. Torpedo Technology, 2013, 21(2): 105-109 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YLJS201302007.htm
    [15] 王凯, 李钰, 刘厚林, 等. 多工况下多级离心泵水动力噪声数值研究[J]. 振动与冲击, 2018, 37(9): 50-55 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201809009.htm

    WANG K, LI Y, LIU H L, et al. Numerical simulation for hydrodynamic noise of a multistage centrifugal pump under multi-working condition[J]. Journal of Vibration and Shock, 2018, 37(9): 50-55 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201809009.htm
    [16] 李晓文, 林壮, 郭志群, 等. 基于STAR-CCM+的滑行艇水动力性能模拟计算[J]. 中南大学学报(自然科学版), 2013, 44(S2): 133-137 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD2013S2026.htm

    LI X W, LIN Z, GUO Z Q, et al. Numerical simulation calculation for hydrodynamics of planning crafts based on Star-CCM+[J]. Journal of Central South University (Science and Technology), 2013, 44(S2): 133-137 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD2013S2026.htm
    [17] 徐野, 熊鹰, 黄政. 螺旋桨激励水下壳体振动噪声数值研究[J]. 振动与冲击, 2020, 39(2): 86-91, 122 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202002013.htm

    XU Y, XIONG Y, HUANG Z. Numerical study on the propeller induced vibration noise of an underwater hull[J]. Journal of Vibration and Shock, 2020, 39(2): 86-91, 122 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202002013.htm
  • 加载中
图(16)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  60
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回