留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内管外腔型超磁致伸缩致动器传热分析

陈清华 林汉毅 许斌

陈清华,林汉毅,许斌. 内管外腔型超磁致伸缩致动器传热分析[J]. 机械科学与技术,2022,41(3):481-486 doi: 10.13433/j.cnki.1003-8728.20200372
引用本文: 陈清华,林汉毅,许斌. 内管外腔型超磁致伸缩致动器传热分析[J]. 机械科学与技术,2022,41(3):481-486 doi: 10.13433/j.cnki.1003-8728.20200372
CHEN Qinghua, LIN Hanyi, XU Bin. Heat Transfer Analysis of Giant Magnetostrictive Actuator with Inner Tube and Outer Cavity[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 481-486. doi: 10.13433/j.cnki.1003-8728.20200372
Citation: CHEN Qinghua, LIN Hanyi, XU Bin. Heat Transfer Analysis of Giant Magnetostrictive Actuator with Inner Tube and Outer Cavity[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 481-486. doi: 10.13433/j.cnki.1003-8728.20200372

内管外腔型超磁致伸缩致动器传热分析

doi: 10.13433/j.cnki.1003-8728.20200372
详细信息
    作者简介:

    陈清华(1978−),教授,博士,研究方向为机械智能控制与结构设计和传热传质学,hnlinhanyi@163.com

  • 中图分类号: TK124

Heat Transfer Analysis of Giant Magnetostrictive Actuator with Inner Tube and Outer Cavity

  • 摘要: 为了降低温升对超磁致伸缩致动器工作性能的影响,提出了一种采用内管外腔式的超磁致伸缩致动器水冷结构。基于热阻定律建立其传热模型,分析了影响超磁致伸缩材料棒温度的因素,对超磁致伸缩致动器稳态时的温度进行了仿真分析。结果表明,虽然超磁致伸缩致动器的温度随着电流强度的增大而升高,但是采用强制水冷可以有效地控制温升,且温升随着冷却水入口流速的增大而减小,当冷却水入口流速为3 m/s时,超磁致伸缩材料棒的热变形量不大于0.09 μm。
  • 图  1  GMA结构示意图

    图  2  GMA传热模型

    图  3  GMA等效热阻模型

    图  4  GMA温度分布云图

    图  5  电流大小对GMA棒温度的影响

    图  6  冷却水流速对GMM棒温度的影响

    图  7  GMM棒轴向温度分布

    表  1  GMA结构参数表

    参数 材料 轴向尺寸/
    mm
    径向尺寸/m
    内径 外径
    GMM棒 Terfenol-D LG = 50 8
    铜管 2 4
    线圈 LC = 51 24 40
    线圈骨架 尼龙 Lf = 51 16 24
    冷却腔骨架 45钢 Lq = 60 40 45
    套筒 45钢 Lt = 60 60 86
    前、后导磁端盖 DT4 Ld = 12 86
    下载: 导出CSV

    表  2  线圈电流大小与产热功率表

    电流/A 1 2 3 4 5 6
    功率/W 0.9 3.6 8.1 14.4 22.5 32.4
    下载: 导出CSV

    表  3  两种入口流速下GMA温度比较表

    部件 GMM棒 线圈骨架 线圈 冷却
    腔骨架
    套筒
    自然对流(1 A) 28.71 28.74 28.77 28.73 28.68
    自然对流(6 A) 118.88 119.77 120.64 119.63 118.26
    强制对流(1 A) 25.03 25.10 25.14 25.12 25.10
    强制对流(6 A) 26.12 28.62 29.85 29.09 28.33
    下载: 导出CSV
  • [1] 陶孟仑, 陈定方, 卢全国, 等. 超磁致伸缩材料动态涡流损耗模型及试验分析[J]. 机械工程学报, 2012, 48(13): 146-151 doi: 10.3901/JME.2012.13.146

    TAO M L, CHEN D F, LU Q G, et al. Eddy current losses of giant magnetostrietors: modeling and experimental analysis[J]. Journal of Mechanical Engineering, 2012, 48(13): 146-151 (in Chinese) doi: 10.3901/JME.2012.13.146
    [2] 陈旭玲, 朱如鹏, 陈阳. 多场耦合下超磁致伸缩材料特性与应用综述[J]. 机械传动, 2016, 40(10): 181-184

    CHEN X L, ZHU R P, CHEN Y. Review of performance and application of giant magnetostrictive materials under the multi-field coupling[J]. Journal of Mechanical Transmission, 2016, 40(10): 181-184 (in Chinese)
    [3] 徐彬, 王传礼, 喻曹丰, 等. 基于GMA柔性换向放大机构的结构设计与优化[J]. 机械传动, 2019, 43(10): 62-67

    XU B, WANG C L, YU C F, et al. Structural Design and Optimization of flexible commutation amplification mechanism based on giant magnetostrictive actuator[J]. Journal of Mechanical Transmission, 2019, 43(10): 62-67 (in Chinese)
    [4] KARUNANIDHI S, SINGAPERUMAL M. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve[J]. Sensors and Actuators A:Physical, 2010, 157(2): 185-197 doi: 10.1016/j.sna.2009.11.014
    [5] LUO M Z, LI W J, WANG J M, et al. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation[J]. Sensors, 2018, 18(3): 779 doi: 10.3390/s18030779
    [6] 贾振元, 郭东明. 超磁致伸缩材料微位移执行器原理与应用[M]. 北京: 科学出版社, 2008

    JIA Z Y, GUO D M. Theory and applicational of giant magnetostrictive microdisplacement actuator[M]. Beijing: Science Press, 2008 (in Chinese)
    [7] 王振宇, 朱玉川, 李宇阳, 等. 超磁致伸缩电静液作动器输出流量影响因素分析[J]. 机械科学与技术, 2019, 38(4): 582-586

    WANG Z Y, ZHU Y C, LI Y Y, et al. Analyzing factors of influence on performance of giant magnetostrictive electro-hydrostatic actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 582-586 (in Chinese)
    [8] 曾海泉, 曾庚鑫, 曾建斌, 等. 超磁致伸缩功率超声换能器热分析[J]. 中国电机工程学报, 2011, 31(6): 116-120

    ZENG H Q, ZENG G X, ZENG J B, et al. Thermal analysis of giant magnetostrictive high power ultrasonic transducer[J]. Proceedings of the CSEE, 2011, 31(6): 116-120 (in Chinese)
    [9] 郑建飞. 超磁致伸缩智能构件热特性分析及温度控制装置研究[D]. 杭州: 浙江大学, 2014

    ZHENG J F. Thermal analysis and temperature control device research of giant magnetostrictive material smart component[D]. Hangzhou: Zhejiang University, 2014 (in Chinese)
    [10] 刘慧芳, 马凯, 梁全, 等. GMA的温度特性分析及热形变被动补偿方法研究[J]. 振动与冲击, 2019, 38(15): 149-156

    LIU H F, MA K, LIANG Q, et al. Temperature characteristics of GMA and passive compensation method for its thermal deformation[J]. Journal of Vibration and Shock, 2019, 38(15): 149-156 (in Chinese)
    [11] 李跃松, 朱玉川, 吴洪涛, 等. 超磁致伸缩伺服阀用电-机转换器传热及热误差分析[J]. 农业机械学报, 2015, 46(2): 343-350 doi: 10.6041/j.issn.1000-1298.2015.02.051

    LI Y S, ZHU Y C, WU H T, et al. Modeling of heat transfer and displacement error from heat of giant magnetostrictive actuator applied in servovalve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 343-350 (in Chinese) doi: 10.6041/j.issn.1000-1298.2015.02.051
    [12] 桂礼飞. 超磁致伸缩精密位移驱动器的热分析与控制[D]. 杭州: 浙江大学, 2008

    GUI L F, Study on the thermal analysis and control of the giant magnetostrictive actuator used for precision position[D]. Hangzhou: Zhejiang University, 2008 (in Chinese)
    [13] 林丞, 葛津铭, 陈彤, 等. 超磁致伸缩执行器温升分析及温控方法[J]. 磁性材料及器件, 2018, 49(3): 10-15 doi: 10.3969/j.issn.1001-3830.2018.03.004

    LIN C, GE J M, CHEN T, et al. Analysis of temperature rise and its control method of giant magnetostrictive actuator[J]. Journal of Magnetic Materials and Devices, 2018, 49(3): 10-15 (in Chinese) doi: 10.3969/j.issn.1001-3830.2018.03.004
    [14] ZHU Y C, JI L. Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator[J]. Sensors and Actuators A:Physical, 2014, 218: 167-178 doi: 10.1016/j.sna.2014.07.017
    [15] 余震, 陈定方, 陈天沛, 等. 基于超磁致伸缩材料微进给刀架磁热特性与仿真[J]. 机械设计与研究, 2011, 27(5): 42-45

    YU Z, CHEN D F, CHEN T P, et al. Research and simulation of thermal and magnetic properties for micro-feed turret based on giant magnetostrictive material[J]. Machine Design and Research, 2011, 27(5): 42-45 (in Chinese)
    [16] LU Q G, ZHOU M, CAO Q H, et al. Integrated optimized design of GMA with double water-cooling cavums[C]//Proceedings of 2010 International Conference on Mechanic Automation and Control Engineering. Wuhan: IEEE, 2010: 3562-3565
    [17] 程清风. 射流伺服阀用超磁致伸缩执行器的应用研究[D]. 南京: 南京航空航天大学, 2012

    CHENG Q F. Applied research on giant magnetostrictive actuator for jet-servo valve[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese)
    [18] 鞠晓君, 林明星, 范文涛, 等. 滚珠丝杠预紧用环状磁致伸缩致动器的设计与特性研究(英文)[J]. 中南大学学报, 2018, 25(7): 1799-1812 doi: 10.1007/s11771-018-3870-0

    JU X J, LIN M X, FAN W T, et al. Structure design and characteristics analysis of a cylindrical giant magnetostrictive actuator for ball screw preload[J]. Journal of Central South University, 2018, 25(7): 1799-1812 (in Chinese) doi: 10.1007/s11771-018-3870-0
    [19] ANGARA R. High frequency high amplitude magnetic field driving system for magnetostrictive actuators[D]. Baltimore: University of Maryland, 2009
    [20] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006

    YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006 (in Chinese)
    [21] 贾振元, 杨兴, 郭东明, 等. 超磁致伸缩材料微位移执行器的设计理论及方法[J]. 机械工程学报, 2001, 37(11): 46-49 doi: 10.3321/j.issn:0577-6686.2001.11.010

    JIA Z Y, YANG X, GUO D M, et al. Theories and methods of designing microdisplacement actuator based on giant magnetostr ictive materials[J]. Chinese Journal of Mechanical Engineering, 2001, 37(11): 46-49 (in Chinese) doi: 10.3321/j.issn:0577-6686.2001.11.010
    [22] NICOLÁS VÁZQUEZ I, RODRÍGUEZ-NÚÑEZ J R, PEÑA-CABALLERO V, et al. Theoretical and experimental study of fenofi brate and simvastatin[J]. Journal of Molecular Structure, 2017, 1149: 683-693 doi: 10.1016/j.molstruc.2017.08.044
    [23] 赵惇殳. 电子设备热设计[M]. 北京: 电子工业出版社, 2009

    ZHAO D S. Thermal design of electronic equipment[M]. Beijing: Publishing House of Electronics Industry, 2009 (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  19
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 刊出日期:  2022-03-05

目录

    /

    返回文章
    返回