留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向整车振动抑制的磁流变阻尼器协同优化

韦鑫鑫 朱孙科 邓召学

韦鑫鑫,朱孙科,邓召学. 面向整车振动抑制的磁流变阻尼器协同优化[J]. 机械科学与技术,2022,41(3):473-480 doi: 10.13433/j.cnki.1003-8728.20200370
引用本文: 韦鑫鑫,朱孙科,邓召学. 面向整车振动抑制的磁流变阻尼器协同优化[J]. 机械科学与技术,2022,41(3):473-480 doi: 10.13433/j.cnki.1003-8728.20200370
WEI Xinxin, ZHU Sunke, DENG Zhaoxue. Collaborative Optimization of Magneto-rheological Damper for Vehicle Vibration Suppression[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 473-480. doi: 10.13433/j.cnki.1003-8728.20200370
Citation: WEI Xinxin, ZHU Sunke, DENG Zhaoxue. Collaborative Optimization of Magneto-rheological Damper for Vehicle Vibration Suppression[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 473-480. doi: 10.13433/j.cnki.1003-8728.20200370

面向整车振动抑制的磁流变阻尼器协同优化

doi: 10.13433/j.cnki.1003-8728.20200370
基金项目: 重庆市教委科学技术研究项目(KJQN202100728)
详细信息
    作者简介:

    韦鑫鑫(1996−),硕士研究生,研究方向为车辆系统动力学研究,1273473504@qq.com

    通讯作者:

    邓召学,讲师,博士, dengzhaoxue@cqjtu.edu.cn

  • 中图分类号: U463.1

Collaborative Optimization of Magneto-rheological Damper for Vehicle Vibration Suppression

  • 摘要: 本文提出一种面向整车振动抑制的磁流变阻尼器协同优化方法。设计一种具有锥形倾斜角度阻尼通道的磁流变阻尼器,推导了其阻尼力数学模型,采用有限元法对磁路结构参数进行分析。搭建了整车七自由度模型,通过ISIGHT软件搭建协同优化仿真平台,以悬架动挠度、轮胎动载荷、车身垂向加速度均方根值为优化目标,利用遗传算法对磁流变阻尼器结构进行了优化。结果表明:悬架动挠度、轮胎动载荷和车身垂向加速度都得到了相应的改善,优化后的阻尼器能更好的提高了车辆平顺性和操稳性。
  • 图  1  磁流变阻尼器结构示意图

    图  2  磁流变阻尼器磁芯

    图  3  锥形通道拓展表面图

    图  4  有限元模型及节点编号

    图  5  径向通道与倾斜通道磁感应强度对比图

    图  6  不同内径下阻尼通道间隙处磁感应强度曲线

    图  7  不同间隙下阻尼通道磁感应强度曲线

    图  8  不同倾斜角度下阻尼通道磁感应强度曲线

    图  9  减速带模型

    图  10  路面断面曲线

    图  11  七自由度整车模型

    图  12  优化原理图

    图  13  优化前后磁感应强度对比

    图  14  匀速工况优化前后阻尼力对比

    图  15  过减速带工况优化前后阻尼力对比

    图  16  匀速工况下优化前后的时域图

    图  17  过减速带工况下优化前后时域图

    表  1  初始结构参数

    R1/mm θ/(°) H0/mm L1/mm
    18 15 2 9
    下载: 导出CSV

    表  2  七自由度整车模型参数

    参数 数值 参数 数值
    ${m_s}$ 1836 kg $ {I_y} $ 3411 kg·m2
    $ {m_{u1}} $ 50 kg $ {k_1} $ 68400 N/m
    $ {m_{u2}} $ 50 kg $ {k_2} $ 68400 N/m
    $ {m_{u3}} $ 50 kg $ {k_3} $ 76800 N/m
    $ {m_{u4}} $ 50 kg $ {k_4} $ 76800 N/m
    $ {L_f} $ 1.455 m $ {k_{t1}} $ 230000 N/m
    $ {L_r} $ 1.514 m $ {k_{t2}} $ 230000 N/m
    $ {B_l} $ 0.805 m $ {k_{t3}} $ 230000 N/m
    $ {B_r} $ 0.805 m $ {k_{t4}} $ 230000 N/m
    $ {I_x} $ 676 kg·m2
    下载: 导出CSV

    表  3  优化前后结构参数

    参数   R1/mm θ/(°) H0/mm L1/mm
    优化区间 [16, 23] [5, 30] [1.5, 2.5] [7, 10]
    优化前数值 18 15 2 9
    优化后数值 21.7 18.7 1.7 9.6
    下载: 导出CSV

    表  4  优化前后匀速工况均方根值

    RMS 悬架动挠度
    均方根值/m
    轮胎动载荷
    均方根值/N
    车身垂向加速度
    均方根值/(m·s−2
    优化前无倾斜角度 0.0018 191.1849 0.2710
    优化前有倾斜角度 0.0013 141.2724 0.2317
    优化后有倾斜角度 0.0011 131.0225 0.2276
    下载: 导出CSV

    表  5  优化前后过减速带工况均方根值

    RMS 悬架动挠度
    均方根值/m
    轮胎动载荷
    均方根值/N
    车身垂向加速度
    均方根值/(m·s−2
    优化前无倾斜角度 0.0089 626.1404 1.0020
    优化前有倾斜角度 0.0058 435.6671 0.7570
    优化后有倾斜角度 0.0049 414.3259 0.7029
    下载: 导出CSV
  • [1] MANJEET K, SUJATHA C. Magnetorheological valves based on Herschel-Bulkley fluid model: modelling, magnetostatic analysis and geometric optimization[J]. Smart Materials and Structures, 2019, 28(11): 115008 doi: 10.1088/1361-665X/ab421a
    [2] KUBÍK M, MACHÁČEK O, STRECKER Z, et al. Design and testing of magnetorheological valve with fast force response time and great dynamic force range[J]. Smart Materials and Structures, 2017, 26(4): 047002 doi: 10.1088/1361-665X/aa6066
    [3] TU J W, YU Y, HUANG L, et al. Research on new type viscoelastic damper based on MRE smart material: design, experiment and modelling[J]. Materials Research Innovations, 2014, 18(S2): S2-243-S2-249
    [4] GURUBASAVARAJU T M, KUMAR H, ARUN M. Evaluation of optimal parameters of MR fluids for damper application using particle swarm and response surface optimisation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(9): 3683-3694 doi: 10.1007/s40430-017-0875-9
    [5] GURUBASAVARAJU T M, KUMAR H, ARUN M. Optimisation of monotube magnetorheological damper under shear mode[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(6): 2225-2240 doi: 10.1007/s40430-017-0709-9
    [6] NIE S L, XIN D K, JI H, et al, Optimization and performance analysis of magnetorheological fluid damper considering different piston configurations[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(5): 764-777
    [7] NANTHAKUMAR A J D, JANCIRANI J. Design optimization of magnetorheological damper geometry using response surface method for achieving maximum yield stress[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4319-4329 doi: 10.1007/s12206-019-0828-6
    [8] 胡国良, 易锋, 张佳伟, 等. 基于DOE及RSM的单线圈磁流变阻尼器优化设计及动力性能分析[J]. 北京理工大学学报, 2020, 40(11): 1150-1160

    HU G L, YI F, ZHANG J W, et al. Optimal design and dynamic performance analysis of single coil magnetorheological damper based on DOE and RSM[J]. Journal of Beijing Institute of Technology, 2020, 40(11): 1150-1160 (in Chinese)
    [9] DONG Z Z, FENG Z M, CHEN Y H, et al. Design and Multiobjective optimization of Magnetorheological damper considering the consistency of magnetic flux density[J]. Shock and Vibration, 2020, 2020: 7050356
    [10] DENG Z X, YANG Q H, YANG X J. Optimal design and experimental evaluation of magneto-rheological mount applied to start/stop mode of vehicle powertrain[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(8): 1126-1137 doi: 10.1177/1045389X20910271
    [11] ZHANG X J, LI Z H, GUO K H, et al. A novel pumping magnetorheological damper: design, optimization, and evaluation[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(17): 2339-2348 doi: 10.1177/1045389X17689937
    [12] 郑玲, 兰晓辉, 李以农. 基于组合目标函数的磁流变减振器优化设计[J]. 振动工程学报, 2011, 24(6): 600-606 doi: 10.3969/j.issn.1004-4523.2011.06.004

    ZHENG L, LAN X H, LI Y N. The optimal design of magneto-rheological dampers based on mixed objective function[J]. Journal of Vibration Engineering, 2011, 24(6): 600-606 (in Chinese) doi: 10.3969/j.issn.1004-4523.2011.06.004
    [13] 张也影. 流体力学[M]. 北京: 高等教育出版社, 2002

    ZHANG Y Y. Hydromechanics[M]. Beijing: Higher Education Press, 2002 Education Press, 2011, 24(6): 600-606 (in Chinese)
    [14] 邓召学. 汽车动力总成磁流变悬置优化设计及控制策略研究[D]. 重庆: 重庆大学, 2015

    DENG Z X. Optimal design and control strategy research of automotive powertrain magneto-rheological mount[D]. Chongqing: Chongqing University, 2015 (in Chinese)
    [15] NGUYEN Q H, CHOI S B, LEE Y S, et al. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths[J]. Smart Materials and Structures, 2013, 22(11): 115024 doi: 10.1088/0964-1726/22/11/115024
    [16] 余志生. 汽车理论[M]. 5版. 北京: 机械工业出版社, 2009

    YU Z S. Automobile theory[M]. 5th ed. Beijing: China Machine Press, 2009 (in Chinese)
    [17] 卢炽华, 刘永臣, 刘志恩, 等. 基于遗传算法的动力总成悬置模态解耦及隔振性能优化[J]. 振动与冲击, 2018, 37(14): 248-253

    LU Z H, LIU Y C, LIU Z E, et al. Optimization design for improving the vibration modes decoupling rate and vibration isolation performance of a powertrain mounting system based on the genetic algorithm[J]. Journal of Vibration and Shock, 2018, 37(14): 248-253 (in Chinese)
    [18] 黄华, 卢曦, 余慧杰. 基于Ansys与iSIGHT的橡胶减震器迟滞回线仿真研究[J]. 现代制造工程, 2014(12): 59-63 doi: 10.3969/j.issn.1671-3133.2014.12.013

    HUANG H, LU X, YU H J. Simulation research of the rubber damper hysteresis loop under harmonic load based on Ansys and iSIGHT[J]. Modern Manufacturing Engineering, 2014(12): 59-63 (in Chinese) doi: 10.3969/j.issn.1671-3133.2014.12.013
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 刊出日期:  2022-03-05

目录

    /

    返回文章
    返回