留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同旋翼间距下共轴双旋翼无人机的气动特性

雷瑶 叶艺强 王恒达 黄宇晖

雷瑶,叶艺强,王恒达, 等. 不同旋翼间距下共轴双旋翼无人机的气动特性[J]. 机械科学与技术,2022,41(3):487-492 doi: 10.13433/j.cnki.1003-8728.20200352
引用本文: 雷瑶,叶艺强,王恒达, 等. 不同旋翼间距下共轴双旋翼无人机的气动特性[J]. 机械科学与技术,2022,41(3):487-492 doi: 10.13433/j.cnki.1003-8728.20200352
LEI Yao, YE Yiqiang, WANG Hengda, HUANG Yuhui. Study on Aerodynamic Characteristics of Coaxial Rotors UAV with Different Rotor Spacing[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 487-492. doi: 10.13433/j.cnki.1003-8728.20200352
Citation: LEI Yao, YE Yiqiang, WANG Hengda, HUANG Yuhui. Study on Aerodynamic Characteristics of Coaxial Rotors UAV with Different Rotor Spacing[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 487-492. doi: 10.13433/j.cnki.1003-8728.20200352

不同旋翼间距下共轴双旋翼无人机的气动特性

doi: 10.13433/j.cnki.1003-8728.20200352
基金项目: 国家自然科学基金项目(51505087)与福州大学晋江科教园资助项目(2019-JJFDKY-59)
详细信息
    作者简介:

    雷瑶(1985−),副教授,博士,研究方向为多旋翼飞行器气动性能分析,yaolei@fzu.edu.cn

  • 中图分类号: TG156

Study on Aerodynamic Characteristics of Coaxial Rotors UAV with Different Rotor Spacing

  • 摘要: 为了获得共轴双旋翼的最佳气动性能,对不同旋翼间距比的共轴双旋翼无人机进行了试验和数值模拟。首先,对共轴双旋翼的气动性能参数进行了理论分析。然后,构造共轴双旋翼模型进行数值模拟,并通过自行设计的试验获得了升力和功率。同时,将试验获得的升力和功耗转化为功率载荷和悬停效率进行气动分析。最后,结合试验和仿真结果表明,工作转速2 200 r/min下,与i = 0.75在相比,当间距比i = 0.385时,功率载荷提高了1.5%,总效率提高了大约5.64%。该间距比下的气动性能较好,可以作为共轴旋翼无人机的最佳气动布局。
  • 图  1  共轴双旋翼在悬停时旋翼的尾迹涡和下洗流的流动模型

    图  2  试验装置及参数测试流程

    图  3  与0.75R对比的功率载荷变化图

    图  4  与0.75R对比的性能指标变化图

    图  5  与0.75R对比的功率系数变化图

    图  6  网格划分效果

    图  7  悬停时共轴双旋翼的流线分布(2200 r/min)

    图  8  悬停时下洗流的诱导速度分布(2200 r/min)

    图  9  悬停时共轴双旋翼的涡流分布(2200 r/min)

  • [1] NONAMI K. Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV[J]. Journal of System Design and Dynamics, 2007, 1(2): 120-128
    [2] 朱正, 招启军, 李鹏. 悬停状态共轴刚性双旋翼非定常流动干扰机理[J]. 航空学报, 2016, 37(2): 568-578

    ZHU Z, ZHAO Q J, LI P. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 568-578 (in Chinese)
    [3] YOON S, LEE H C, PULLIAM T H. Computational study of flow interactions in coaxial rotors[C]//Proceedings of AHS Technical Meeting on Aeromechanics Design for Vertical Lift. San Francisco: NASA, 2016: 1-8
    [4] 袁明川, 刘平安, 樊枫, 等. 共轴刚性旋翼气动干扰特性风洞试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 257-262

    YUAN M C, LIU P A, FAN F, et al. Wind tunnel test investigation of coaxial rigid rotor aerodynamic interaction[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 257-262 (in Chinese)
    [5] LAKSHMINARAYAN V K. Computational investigation of Micro-Scale coaxial rotor aerodynamics in hover[D]. Maryland: University of Maryland, 2009
    [6] PASSE B, SRIDHARAN A, BAEDER J. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight[C]//Proceedings of 33rd AIAA Applied Aerodynamics Conference. Dallas: AIAA, 2015: 1-29
    [7] 卢丛玲, 祁浩天, 徐国华. 共轴双旋翼非定常流场干扰特性[J]. 航空动力学报, 2019, 34(7): 1459-1470

    LU C L, QI H T, XU G H. Unsteady flow field interaction of coaxial rotor[J]. Journal of Aerospace Power, 2019, 34(7): 1459-1470 (in Chinese)
    [8] 叶舟, 史勇杰, 徐国华. 耦合高效配平策略的旋翼气动特性分析方法[J]. 航空动力学报, 2017, 32(4): 882-889

    YE Z, SHI Y J, XU G H. Analytical method of rotor aerodynamic characteristics by coupling a high-efficiency trim strategy[J]. Journal of Aerospace Power, 2017, 32(4): 882-889 (in Chinese)
    [9] 覃燕华, 朱清华, 邵松. 共轴双旋翼悬停地面效应气动特性分析[J]. 南京航空航天大学学报, 2015, 47(2): 266-274

    QIN Y H, ZHU Q H, SHAO S. Aerodynamic characteristics analysis for hovering coaxial rotors in ground effect[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 266-274 (in Chinese)
    [10] 陈汉, 李科伟, 邓宏彬, 等. 一种共轴双旋翼飞行器悬停控制联合仿真[J]. 兵工学报, 2019, 40(2): 303-313

    CHEN H, LI K W, DENG H B, et al. Hover control co-simulation of a coaxial dual-rotor aircraft[J]. Acta Armamentarii, 2019, 40(2): 303-313 (in Chinese)
    [11] 匡银虎, 张虹波. 多旋翼无人飞行器悬停姿态精确控制仿真研究[J]. 计算机仿真, 2018, 35(3): 34-37,64 doi: 10.3969/j.issn.1006-9348.2018.03.008

    KUANG Y H, ZHANG H B. Simulation study on accurate control of hovering attitude of Multi-Rotor unmanned aerial vehicle[J]. Computer Simulation, 2018, 35(3): 34-37,64 (in Chinese) doi: 10.3969/j.issn.1006-9348.2018.03.008
    [12] 雷瑶, 纪玉霞, 汪长炜. 微型共轴双旋翼气动性能数值模拟与试验分析[J]. 实验流体力学, 2017, 31(5): 67-73

    LEI Y, JI Y X, WANG C W. Numerical simulation and experimental study on aerodynamics of the micro coaxial rotors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 67-73 (in Chinese)
    [13] 赵元魁, 王耀力. 风场环境下四旋翼飞行器抗干扰研究[J]. 机械科学与技术, 2019, 38(4): 530-537

    ZHAO Y K, WANG Y L. Research on anti-disturbance for quadrotor aircraft in wind field[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 530-537 (in Chinese)
    [14] RAMASAMY M. Hover performance measurements toward understanding aerodynamic interference in coaxial, tandem, and tilt rotors[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-17
    [15] 闫修, 赵旭, 郭汉青, 等. 共轴旋翼悬停测力实验与数值模拟[J]. 航空计算技术, 2015, 45(2): 65-67,71 doi: 10.3969/j.issn.1671-654X.2015.02.016

    YAN X, ZHAO X, GUO H Q, et al. Force measurement and CFD validation of coaxial rotor in hover[J]. Aeronautical Computing Technique, 2015, 45(2): 65-67,71 (in Chinese) doi: 10.3969/j.issn.1671-654X.2015.02.016
    [16] 陆陶冶, 陈仁良, 吉洪蕾, 等. 共轴双旋翼悬停地面效应分析[J]. 哈尔滨工业大学学报, 2017, 49(10): 45-52 doi: 10.11918/j.issn.0367-6234.201607105

    LU T Y, CHEN R L, JI H L, et al. Performance analysis of coaxial-rotor for hovering in ground effect[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 45-52 (in Chinese) doi: 10.11918/j.issn.0367-6234.201607105
    [17] 马艺敏, 陈铭, 王强, 等. 应用PIV测量缩比共轴双旋翼流场特性的研究[J]. 南京航空航天大学学报, 2015, 47(2): 220-227

    MA Y M, CHEN M, WANG Q, et al. PIV measurements of model-scale coaxial rotors flow features[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 220-227 (in Chinese)
    [18] LEI Y, BAI Y, XU Z J, et al. An experimental investigation on aerodynamic performance of a coaxial rotor system with different rotor spacing and wind speed[J]. Experimental Thermal and Fluid Science, 2013, 44: 779-785 doi: 10.1016/j.expthermflusci.2012.09.022
    [19] BOHORQUEZ F, SAMUEL P, SIROHI J, et al. Design, analysis and hover performance of a rotary wing micro air vehicle[J]. Journal of the American Helicopter Society, 2003, 48(2): 80-90 doi: 10.4050/JAHS.48.80
    [20] GUR O, ROSEN A. Optimizing electric propulsion systems for unmanned aerial vehicles[J]. Journal of Aircraft, 2009, 46(4): 1340-1353
    [21] ONDA M, NANBA M, MATSUUCHI K, et al. Stratospheric LTA platform and its thrust efficiency with a stern propeller[C]//Proceedings of the 1st UAV Conference. Portsmouth: AIAA, 2002
    [22] PAWEŁ C M, IGNACY D, MARCIN P. Laboratory tests of a PM-BLDC motor drive[C]//Proceedings of the 2015 Selected Problems of Electrical Engineering and Electronics (WZEE). Kielce: IEEE, 2015: 1-6.
    [23] 于勇. Fluent入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008: 208-209

    YU Y. Introduction and advanced tutorial of Fluent[M]. Beijing: Beijing Institute of Technology Press, 2008: 208-209 (in Chinese)
    [24] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004: 7-10

    WANG F J. Analysis on computational fluid dynamics[M]. Beijing: Tsinghua University Press, 2004: 7-10 (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  62
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 刊出日期:  2022-03-05

目录

    /

    返回文章
    返回