留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变工况下滚动轴承的故障特征提取

李书乐 马洁

李书乐, 马洁. 变工况下滚动轴承的故障特征提取[J]. 机械科学与技术, 2022, 41(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20200307
引用本文: 李书乐, 马洁. 变工况下滚动轴承的故障特征提取[J]. 机械科学与技术, 2022, 41(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20200307
LI Shule, MA Jie. Fault Feature Extraction of Rolling Bearings under Variable Operating Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20200307
Citation: LI Shule, MA Jie. Fault Feature Extraction of Rolling Bearings under Variable Operating Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20200307

变工况下滚动轴承的故障特征提取

doi: 10.13433/j.cnki.1003-8728.20200307
基金项目: 

国家自然科学基金项目 61973041

国家重点研发计划项目 2019YFB1705403

详细信息
    作者简介:

    李书乐(1995-), 硕士研究生, 研究方向为故障诊断, 420744678@qq.com

    通讯作者:

    马洁, 教授, 硕士生导师, mjbeijing@163.com

  • 中图分类号: TH165+.3

Fault Feature Extraction of Rolling Bearings under Variable Operating Conditions

  • 摘要: 滚动轴承常被用于风力涡轮机、发动机等旋转机械中, 由于负载、电流变化等因素将导致旋转设备中的滚动轴承在变速条件下运行。在变转速的工况下, 现有时频分析、共振解调等故障诊断方法并不能有效提取故障特征, 且考虑到强大背景噪声下存在故障特征提取困难的问题, 本文提出了一种基于广义变分模态分解(Generalized variational mode decomposition, GVMD)和分数阶傅里叶变换(Fractional fourier transform, FRFT)的变工况故障特征提取方法。首先将在变工况下故障特征频率呈非线性分布的原始振动信号广义解调为近似线性分布, 其次对解调后的信号进行变分模态分解(Variational mode decomposition, VMD)得到本征模态函数分量(Intrinsic mode functions, IMF), 根据相关系数准则选取最优的分量进行分数阶域的滤波, 最后通过分析滤波后信号的1.5维包络谱提取故障特征频率。通过滚动轴承仿真数据和实验数据的验证表明本文所提方法能够有效提取变工况下滚动轴承的故障特征频率。
  • 图  1  FRFT提取信号分量的物理意义图

    图  2  x(t)及3个成分的时域波形

    图  3  小波变换时频图

    图  4  x(t)的2种分解结果

    图  5  仿真信号时域图

    图  6  分数阶傅里叶变换后的故障诊断分析图

    图  7  滤波后信号的时域图

    图  8  旋转机械故障试验台

    图  9  滚动轴承特征提取流程图

    图  10  小波变换时频图

    图  11  滚动轴承内圈故障数据时域图

    图  12  GVMD分解后各分量时域图

    图  13  GVMD分解后各分量频谱图

    图  14  分数阶傅里叶变换后的结果图

    图  15  含噪声的故障振动信号分数域与幅值关系

    图  16  滤波后信号的分数域与幅值关系

    图  17  滤波后的信号时域图

    图  18  1.5维包络谱图

    表  1  内圈故障轴承参数

    轴承类型 故障类型 滚动体个数 节距直径/mm 滚动体直径/mm
    ER16K 内圈故障 9 38.52 7.94
    下载: 导出CSV

    表  2  IMF分量的相关系数

    模态分量 IMF1 IMF2 IMF3 IMF4
    相关系数值 0.008 0.005 0.002 79 0.001 8
    下载: 导出CSV
  • [1] 王志超, 夏虹, 朱少民, 等. EWT-GG聚类的核电厂轴承故障诊断方法研究[J]. 哈尔滨工程大学学报, 2020, 41(6): 899-906 https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202006019.htm

    WANG Z C, XIA H, ZHU S M, et al. Bearing fault diagnosis method in nuclear power plants based on EWT-GG clustering[J]. Journal of Harbin Engineering University, 2020, 41(6): 899-906 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202006019.htm
    [2] RANDALL R B. Vibration-based condition monitoring: industrial, aerospace and automotive applications[J]. Mechanisms & Machine Science, 2010, 3(4): 431-477 doi: 10.1002/9780470977668.fmatter
    [3] 唐先广, 郭瑜, 丁彦春, 等. 基于短时傅里叶变换和独立分量分析的滚动轴承包络分析[J]. 机械强度, 2012, 34(1): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201003.htm

    TANG X G, GUO Y, DING Y C, et al. Application of rolling element bearing envelope analysis based on short time Fourier transition and independent components analysis[J]. Journal of Mechanical Strength, 2012, 34(1): 1-5 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201003.htm
    [4] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819021.htm

    LI H, ZHANG Q, QIN X R, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819021.htm
    [5] 郑勇. 基于小波和能量特征提取的旋转机械故障诊断方法分析[J]. 电子测试, 2017(20): 34-36 doi: 10.3969/j.issn.1000-8519.2017.20.017

    ZHENG Y. Analysis of rotating machinery fault diagnosis method based on wavelet and energy feature extraction[J]. Electronic Test, 2017(20): 34-36 (in Chinese) doi: 10.3969/j.issn.1000-8519.2017.20.017
    [6] 张琛, 郭俊超, 甄冬, 等. 基于小波包时延相关解调的滚动轴承故障诊断方法[J]. 机械设计, 2020, 37(6): 24-28 doi: 10.3969/j.issn.1001-3997.2020.06.007

    ZHANG C, GUO J C, ZHEN D, et al. Fault diagnosis of rolling element bearings based on the wavelet packet transform and the time-delay correlation demodulation analysis[J]. Journal of Machine Design, 2020, 37(6): 24-28 (in Chinese) doi: 10.3969/j.issn.1001-3997.2020.06.007
    [7] GROVER C, TURK N. Rolling element bearing fault diagnosis using empirical mode decomposition and Hjorth parameters[J]. Procedia Computer Science, 2020, 167: 1484-1494 doi: 10.1016/j.procs.2020.03.359
    [8] 张俊, 张建群, 钟敏, 等. 基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断[J]. 振动、测试与诊断, 2020, 40(2): 287-296, 418 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202002011.htm

    ZHANG J, ZHANG J Q, ZHONG M, et al. PSO-VMD-MCKD based fault diagnosis for incipient damage in wind turbine rolling bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(2): 287-296, 418 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202002011.htm
    [9] SHI J J, LIANG M, GUAN Y P. Bearing fault diagnosis under variable rotational speed via the joint application of windowed fractal dimension transform and generalized demodulation: a method free from prefiltering and resampling[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 15-33 https://www.sciencedirect.com/science/article/pii/S0888327015003817
    [10] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544 doi: 10.1109/TSP.2013.2288675
    [11] 郑近德, 潘海洋, 杨树宝, 等. 广义变分模态分解方法及其在变工况齿轮故障诊断中的应用[J]. 振动工程学报, 2017, 30(3): 502-509 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201703019.htm

    ZHENG J D, PAN H Y, YANG S B, et al. Generalized variational mode decomposition and its applications to gearbox fault diagnosis under variable conditions[J]. Journal of Vibration Engineering, 2017, 30(3): 502-509 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201703019.htm
    [12] 邵岩, 卢迪, 杨广学. 分数阶傅里叶变换在轴承故障诊断中的应用[J]. 哈尔滨理工大学学报, 2017, 22(3): 68-72, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX201703012.htm

    SHAO Y, LU D, YANG G X. Application of fractional Fourier transform in fault diagnostics of rolling bearing[J]. Journal of Harbin University of Science and Technology, 2017, 22(3): 68-72, 79 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX201703012.htm
    [13] 陶然, 齐林, 王越. 分数阶Fourier变换的原理与应用[M]. 北京: 清华大学出版社, 2004: 23-26

    TAO R, QI L, WANG Y. Theory and applications of the fractional Fourier transform[M]. Beijing: Tsinghua University Press, 2004: 23-26 (in Chinese)
    [14] 吕嘉良. 分数阶傅里叶变换在滚动轴承故障诊断中的应用[D]. 哈尔滨: 哈尔滨理工大学, 2019: 30-37

    LYU J L. Application of fractional Fourier transform in fault diagnosis of rolling bearings[D]. Harbin: Harbin University of Science and Technology, 2019: 30-37 (in Chinese)
    [15] OZAKTAS H M, ARIKAN O, KUTAY M A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Transactions On Signal Processing, 1996, 44(9): 2141-2150 doi: 10.1109/78.536672
    [16] 丁荣梅. 多源时频脊线提取及变转速轴承故障诊断研究[D]. 苏州: 苏州大学, 2019

    DING R M. Multiple instantaneous frequency ridge extraction and bearing fault diagnosis under variable speed operations[D]. Suzhou: Soochow University, 2019 (in Chinese)
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  86
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-04
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回