留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业机器人轨迹规划研究现状综述

龙樟 李显涛 帅涛 温飞娟 冯文荣 梁春平

龙樟, 李显涛, 帅涛, 温飞娟, 冯文荣, 梁春平. 工业机器人轨迹规划研究现状综述[J]. 机械科学与技术, 2021, 40(6): 853-862. doi: 10.13433/j.cnki.1003-8728.20200132
引用本文: 龙樟, 李显涛, 帅涛, 温飞娟, 冯文荣, 梁春平. 工业机器人轨迹规划研究现状综述[J]. 机械科学与技术, 2021, 40(6): 853-862. doi: 10.13433/j.cnki.1003-8728.20200132
LONG Zhang, LI Xiantao, SHUAI Tao, WEN Feijuan, FENG Wenrong, LIANG Chunping. Review of Research State of Trajectory Planning for Industrial Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 853-862. doi: 10.13433/j.cnki.1003-8728.20200132
Citation: LONG Zhang, LI Xiantao, SHUAI Tao, WEN Feijuan, FENG Wenrong, LIANG Chunping. Review of Research State of Trajectory Planning for Industrial Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 853-862. doi: 10.13433/j.cnki.1003-8728.20200132

工业机器人轨迹规划研究现状综述

doi: 10.13433/j.cnki.1003-8728.20200132
基金项目: 

南充市市校科技战略合作项目 18SXHZ0008

南充市市校科技战略合作项目 19SXHZ0041

西南石油大学课外开放实验重点项目 NKSZ19005

详细信息
    作者简介:

    龙樟(1992-), 助教, 硕士研究生, 研究方向为机器人技术, longzhang@swpu.edu.cn

  • 中图分类号: TP242

Review of Research State of Trajectory Planning for Industrial Robots

  • 摘要: 凭借良好的环境适应性、高效率、高生产质量以及7×24工作模式, 工业机器人广泛地应用于喷涂、焊接、码垛、搬运等自动化生产中。轨迹规划是工业机器人完成作业任务运动控制的基础, 直接决定了机器人工作质量。为了全面了解轨迹规划现有研究方法, 首先阐述了轨迹规划的基本流程, 根据轨迹规划的原理不同对现有轨迹规划方法进行了分类, 并分别对各种插补曲线函数、最优轨迹规划以及求解算法的性能特点进行了详细的分析与总结。最后对轨迹规划在插补曲线构造和求解算法方面的现存问题做出了分析和讨论, 并展望了轨迹规划的发展趋势。
  • 图  1  轨迹规划常规流程

    图  2  直线加减速规划位置、速度与加速度曲线

    表  1  关节空间与笛卡尔空间轨迹规划性能特点比较

    规划空间 优点 缺点 适用场景
    关节空间 计算简单、省时; 不会发生
    奇异现象; 计算量小[19]
    所得轨迹不够直观; 机器人
    末端轨迹存在误差[20]
    对机器人末端运动轨迹无特殊要求的场景, 如点焊工业机器人[21]
    笛卡尔空间 直观, 能够直接看到机器人末端运动轨迹; 末端轨迹精度高、重复性好、可移植性好[22] 求逆解次数多、计算量大; 可能存在奇异点, 导致关节速度失控[23] 对机器人末端路径有特殊要求且精度要求高, 如喷涂机器人、弧焊机器人[24]
    下载: 导出CSV
  • [1] 张宇. 国外工业机器人发展历史回顾[J]. 机器人产业, 2015(3): 68-82 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRY201503014.htm

    ZHANG Y. Review of the development history of foreign industrial robots[J]. Robot Industry, 2015(3): 68-82 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRY201503014.htm
    [2] LIU J, HUANG X L, FANG S W, et al. Industrial robot path planning for polishing applications[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics. Qingdao: IEEE, 2016: 1764-1769
    [3] XIONG G, DING Y, ZHU L M. A feed-direction stiffness based trajectory optimization method for a milling robot[C]// Proceedings of the 10th International Conference. Wuhan: Springer, 2017: 184-195
    [4] BOŽEK P, TRNKA K. Path planning with motion optimization for car body-in-white industrial robot applications[J]. Advanced Materials Research, 2012, 605-607: 1595-1599 doi: 10.4028/www.scientific.net/AMR.605-607.1595
    [5] ABU-DAKKA F J, RUBIO F, VALERO F, et al. Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles[J]. European Journal of Mechanics-A/Solids, 2013, 42: 210-218 doi: 10.1016/j.euromechsol.2013.05.007
    [6] CUI L L, WANG H S, CHEN W D. Trajectory planning of a spatial flexible manipulator for vibration suppression[J]. Robotics and Autonomous Systems, 2020, 123: 103316 doi: 10.1016/j.robot.2019.103316
    [7] TANG L W, TANG X Q, JIANG X L, et al. Dynamic trajectory planning study of planar two-DOF redundantly actuated cable-suspended parallel robots[J]. Mechatronics, 2015, 30: 187-197 doi: 10.1016/j.mechatronics.2015.07.005
    [8] 李黎, 尚俊云, 冯艳丽, 等. 关节型工业机器人轨迹规划研究综述[J]. 计算机工程与应用, 2018, 54(5): 36-50 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201805005.htm

    LI L, SHANG J Y, FENG Y L, et al. Research of trajectory planning for articulated industrial robot: a review[J]. Computer Engineering and Applications, 2018, 54(5): 36-50 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201805005.htm
    [9] 梁子龙, 丁毓峰. 一种自由曲面抛光机器人轨迹规划方法[J]. 机械科学与技术, 2018, 37(10): 1489-1495 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201810004.htm

    LIANG Z L, DING Y F. A trajectory planning method for free-form surface polishing robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1489-1495 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201810004.htm
    [10] FANG Y, HU J, LIU W H, et al. Smooth and time- optimal S-curve trajectory planning for automated robots and machines[J]. Mechanism and Machine Theory, 2019, 137: 127-153 doi: 10.1016/j.mechmachtheory.2019.03.019
    [11] DINÇER Ü, ÇEVIK M. Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials[J]. Mechanism and Machine Theory, 2019, 132: 248-263 doi: 10.1016/j.mechmachtheory.2018.11.009
    [12] 宋成, 袁杰. 一种冗余机械臂多目标轨迹优化方法[J]. 机械科学与技术, 2020, 39(12): 1852-1858 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202012008.htm

    SONG C, YUAN J. A method for multi-objective optimization of redundant manipulator′s trajectory[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1852-1858 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202012008.htm
    [13] LI Y H, HUANG T, CHETWYND D G. An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines[J]. Mechanism and Machine Theory, 2018, 126: 479-490 doi: 10.1016/j.mechmachtheory.2018.04.026
    [14] GUO J C, LIU Z, CUI G Z. A mathematical modeling and optimization approach for trajectory planning of robot manipulators[J]. Applied Mechanics and Materials, 2012, 157-158: 1388-1392 doi: 10.4028/www.scientific.net/AMM.157-158.1388
    [15] CHEMBULY V V M J S, VORUGANTI H K. Trajectory planning of redundant manipulators moving along constrained path and avoiding obstacles[J]. Procedia Computer Science, 2018, 133: 627-634 doi: 10.1016/j.procs.2018.07.094
    [16] GREGORY J, OLIVARES A, STAFFETTI E. Energy-optimal trajectory planning for robot manipulators with holonomic constraints[J]. Systems & Control Letters, 2012, 61(2): 279-291 http://www.sciencedirect.com/science/article/pii/S016769111100288X
    [17] ZHANG N, SHANG W W. Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot[J]. Mechanism and Machine Theory, 2016, 98: 21-35 doi: 10.1016/j.mechmachtheory.2015.11.007
    [18] CRAIG J J. Introduction to robotics: mechanics and control[M]. London: Pearson Education, Inc., 1986
    [19] GARRIDO J, YU W, LI X O. Robot trajectory generation using modified hidden Markov model and Lloyd′s algorithm in joint space[J]. Engineering Applications of Artificial Intelligence, 2016, 53: 32-40 doi: 10.1016/j.engappai.2016.03.006
    [20] 温贻芳, 孙立宁, 徐朋. 表面改性冗余机器人关节空间的轨迹优化算法[J]. 机械科学与技术, 2018, 37(12): 1870-1874 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201812012.htm

    WEN Y F, SUN L N, XU P. Trajectory optimization algorithm for joint space of a surface modified redundant robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1870-1874 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201812012.htm
    [21] WANG X W, YAN Y X, GU X S. Spot welding robot path planning using intelligent algorithm[J]. Journal of Manufacturing Processes, 2019, 42: 1-10 doi: 10.1016/j.jmapro.2019.04.014
    [22] VALERO F, MATA V, BESA A. Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour[J]. Mechanism and Machine Theory, 2006, 41(5): 525-536 doi: 10.1016/j.mechmachtheory.2005.08.002
    [23] 张鹏, 龚俊, 曾勇, 等. 面向大曲率曲面的喷涂机器人喷枪轨迹规划研究[J]. 机械科学与技术, 2015, 34(11): 1670-1674 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201511007.htm

    ZHANG P, GONG J, ZENG Y, et al. Optimizing trajectory of painting robot′s spray gun for large curvature surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1670-1674 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201511007.htm
    [24] ANDULKAR M V, CHIDDARWAR S S, MARATHE A S. Novel integrated offline trajectory generation approach for robot assisted spray painting operation[J]. Journal of Manufacturing Systems, 2015, 37: 201-216 doi: 10.1016/j.jmsy.2015.03.006
    [25] RUBIO F, VALERO F, SUNẼR J L, et al. A comparison of algorithms for path planning of industrial robots[C]//Proceedings of EUCOMES 08. The second European Conference on Mechanism Science. Selected Papers Based on the Presentations at the Conference. Cassino, Italy: Springer-Verlag, 2009: 247-254
    [26] 朱其新, 费清琪, 朱永红. 伺服系统运动轨迹规划研究简要综述[J]. 苏州科技大学学报, 2018, 35(3): 1-5, 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TDSY201803001.htm

    ZHU Q X, FEI Q Q, ZHU Y H. Review of motion profiles in servo systems[J]. Journal of Suzhou University of Science and Technology, 2018, 35(3): 1-5, 11 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDSY201803001.htm
    [27] LIN F J, SHYU K K, LIN C H. Incremental motion control of linear synchronous motor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 1011-1022 doi: 10.1109/TAES.2002.1039417
    [28] 任秉银, 梁兆东, 孔民秀. 机械手空间圆弧位姿轨迹规划算法的实现[J]. 哈尔滨工业大学学报, 2012, 44(7): 27-31 https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201207006.htm

    REN B Y, LIANG Z D, KONG M X. An algorithm for the interpolation of circular trajectories of manipulators[J]. Journal of Harbin Institute of Technology, 2012, 44(7): 27-31 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201207006.htm
    [29] WANG H, HENG W, HUANG J H, et al. Smooth point-to-point trajectory planning for industrial robots with kinematical constraints based on high-order polynomial curve[J]. Mechanism and Machine Theory, 2019, 139: 284-293 doi: 10.1016/j.mechmachtheory.2019.05.002
    [30] 李珺茹, 齐立群, 韩文波. 六自由度机械臂运动学分析与轨迹优化[J]. 长春理工大学学报, 2019, 42(1): 68-73 doi: 10.3969/j.issn.1672-9870.2019.01.016

    LI J R, QI L Q, HAN W B. Kinematics analysis and trajectory optimization of six degree of freedom manipulator[J]. Journal of Changchun University of Science and Technology, 2019, 42(1): 68-73 (in Chinese) doi: 10.3969/j.issn.1672-9870.2019.01.016
    [31] HU X P, PENG T, ZUO F Y. A trajectory planning method based on newton interpolation and polynomial for manipulator[J]. China Mechanical Engineering, 2012, 23(24): 2946-2949 http://www.researchgate.net/publication/289084429_A_trajectory_planning_method_based_on_Newton_interpolation_and_polynomial_for_manipulator
    [32] 秦超, 梁喜凤, 路杰, 等. 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报, 2018, 52(7): 1260-1266, 1274 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201807005.htm

    QIN C, LIANG X F, LU J, et al. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator[J]. Journal of Zhejiang University, 2018, 52(7): 1260-1266, 1274 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201807005.htm
    [33] 司艳伟, 陈洪立. 六自由度果蔬采摘机器人关节空间轨迹规划[J]. 轻工机械, 2017, 35(4): 8-12 doi: 10.3969/j.issn.1005-2895.2017.04.002

    SI Y W, CHEN H L. Joint trajectory planing of 6-DOF fruit-vegetable harvesting robots[J]. Light Industry Machinery, 2017, 35(4): 8-12 (in Chinese) doi: 10.3969/j.issn.1005-2895.2017.04.002
    [34] GUAN Y S, YOKOI K, STASSE O, et al. On robotic trajectory planning using polynomial interpolations[C]// Proceedings of 2005 IEEE International Conference on Robotics and Biomimetics. Hong Kong: IEEE, 2005: 111-116
    [35] KUBOTA N, ARAKAWA T, FUKUDA T, et al. Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm[C]//Proceedings of International Conference on Robotics and Automation. Albuquerque: IEEE, 1997: 205-210
    [36] 张树刚, 赵佳. 基于S型曲线的包装堆垛机器人轨迹规划[J]. 包装工程, 2018, 39(1): 136-140 https://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201801028.htm

    ZHANG S G, ZHAO J. Trajectory planning of packaging palletizing robot based on S-curve[J]. Packaging Engineering, 2018, 39(1): 136-140 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201801028.htm
    [37] 李振娜, 王涛, 王斌锐, 等. 基于带约束S型速度曲线的机械手笛卡尔空间轨迹规划[J]. 智能系统学报, 2019, 14(4): 655-661 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201904008.htm

    LI Z N, WANG T, WANG B R, et al. Trajectory planning for manipulator in Cartesian space based on constrained S-curve velocity[J]. CAAI Transactions on Intelligent Systems, 2019, 14(4): 655-661 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201904008.htm
    [38] CHEN W, TANG Y, ZHAO Q. A novel trajectory planning scheme for spray painting robot with Bézier curves[C]//Proceedings of 2016 Chinese Control and Decision Conference (CCDC). Yinchuan: IEEE, 2016: 6746-6750
    [39] 岳晴晴, 林明, 林永才. 基于NURBS算法的工业机器人轨迹规划研究[J]. 机床与液压, 2019, 47(9): 28-32, 71 doi: 10.3969/j.issn.1001-3881.2019.09.006

    YUE Q Q, LIN M, LIN Y C. Research on trajectory planning of industrial robot based on NURBS algorithm[J]. Machine Tool & ydraulics, 2019, 47(9): 28-32, 71 (in Chinese) doi: 10.3969/j.issn.1001-3881.2019.09.006
    [40] LIU S C, WANG Y Q, WANG X V, et al. Energy- efficient trajectory planning for an industrial robot using a multi-objective optimisation approach[J]. Procedia Manufacturing, 2018, 25: 517-525 doi: 10.1016/j.promfg.2018.06.122
    [41] KIM J, CROFT E A. Online near time-optimal trajectory planning for industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2019, 58: 158-171 doi: 10.1016/j.rcim.2019.02.009
    [42] PETRINEC K, KOVACIC Z. Trajectory planning algorithm based on the continuity of jerk[C]//Proceedings of 2007 Mediterranean Conference on Control & Automation. Athens, Greece: IEEE, 2007: 1-5
    [43] ABE A. An effective trajectory planning method for simultaneously suppressing residual vibration and energy consumption of flexible structures[J]. Case Studies in Mechanical Systems and Signal Processing, 2016, 4: 19-27 doi: 10.1016/j.csmssp.2016.08.001
    [44] XIDIAS E K. Time-optimal trajectory planning for hyper- redundant manipulators in 3D workspaces[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 286-298 doi: 10.1016/j.rcim.2017.10.005
    [45] 丁阳, 顾寄南. 基于QPSO算法的机器人时间最优轨迹规划[J]. 自动化与仪器仪表, 2020(1): 16-19 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYY202001004.htm

    DING Y, GU J N. Time-optimal trajectory planning of robot based on QPSO[J]. Automation & Instrumentation, 2020(1): 16-19 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYY202001004.htm
    [46] PIRES E J S, TENREIRO MACHADO J A, DE MOURA OLIVEIRA P B. Robot trajectory planning using multi-objective genetic algorithm optimization[M]//DEB K. Genetic and Evolutionary Computation-GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Berlin, Heidelberg: Springer, 2004: 615-626
    [47] PARYANTO, BROSSOG M, KOHL J, et al. Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system[J]. Procedia CIRP, 2014, 23: 131-136 doi: 10.1016/j.procir.2014.10.091
    [48] LUO L P, YUAN C, YAN R J, et al. Trajectory planning for energy minimization of industry robotic manipulators using the Lagrange interpolation method[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(5): 911-917 doi: 10.1007/s12541-015-0119-9
    [49] GREGORY J, OLIVARES A, STAFFETTI E. Energy- optimal trajectory planning for robot manipulators with holonomic constraints[J]. Systems & Control Letters, 2012, 61(2): 279-291 http://www.sciencedirect.com/science/article/pii/S016769111100288X
    [50] 顾益铭. 基于能量最优六自由度植发机械臂轨迹规划研究[D]. 东岛: 青岛科技大学, 2019

    GU Y M. Energy-optimal trajectory planning of six DOF robot arm for planting hair[D]. Qingdao: Qingdao University of Science & Technology, 2019 (in Chinese)
    [51] GARG D P, KUMAR M. Camera calibration and sensor fusion in an automated flexible manufacturing multi-robot work cell[C]//Proceedings of the 2002 American Control Conference. Anchorage: IEEE, 2002: 4934-4939
    [52] 杨锦涛, 姜文刚, 林永才. 工业机器人冲击最优的轨迹规划算法[J]. 科学技术与工程, 2014, 14(28): 64-69 doi: 10.3969/j.issn.1671-1815.2014.28.013

    YANG J T, JIANG W G, LIN Y C. Jerk-optimal trajectory planning algorithm of industry robot[J]. Science Technology and Engineering, 2014, 14(28): 64-69 (in Chinese) doi: 10.3969/j.issn.1671-1815.2014.28.013
    [53] LIN H I. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization[J]. Journal of Intelligent & Robotic Systems, 2014, 75(3-4): 379-392 doi: 10.1007/s10846-013-9982-8
    [54] VASS G, LANTOS B, PAYANDEH S. Real-time optimized robot trajectory planning with jerk[J]. IFAC Proceedings Volumes, 2003, 36(17): 265-270 doi: 10.1016/S1474-6670(17)33404-3
    [55] CHEN C T, LIAO T T. A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(1): 72-81 doi: 10.1016/j.rcim.2010.06.012
    [56] HUANG J S, HU P F, WU K Y, et al. Optimal time-jerk trajectory planning for industrial robots[J]. Mechanism and Machine Theory, 2018, 121: 530-544 doi: 10.1016/j.mechmachtheory.2017.11.006
    [57] CHEN D, LI S Q, WANG J F, et al. A multi-objective trajectory planning method based on the improved immune clonal selection algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 431-442 doi: 10.1016/j.rcim.2019.04.016
    [58] 杨云, 周诚, 王崴, 等. 基于SUMTNSGA-Ⅱ的多目标轨迹规划[J]. 计算机工程与设计, 2015, 36(11): 3076-3081 https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201511039.htm

    YANG Y, ZHOU C, WANG W, et al. Multi-objective trajectory planning based on SUMTNSGA-Ⅱ[J]. Computer Engineering and Design, 2015, 36(11): 3076-3081 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201511039.htm
    [59] 陆佳皓, 平雪良. 一种机械臂最优时间-冲击轨迹优化算法[J]. 机械科学与技术, 2019, 38(10): 1548-1554 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201910013.htm

    LU J H, PING X L. Time-jerk-optimal trajectory planning algorithm for manipulators[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10): 1548-1554 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201910013.htm
    [60] 付荣, 居鹤华. 基于粒子群优化的时间最优机械臂轨迹规划算法[J]. 信息与控制, 2011, 40(6): 802-808 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYK201106015.htm

    FU R, JU H H. Time-optimal trajectory planning algorithm for manipulator based on PSO[J]. Information and Control, 2011, 40(6): 802-808 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXYK201106015.htm
    [61] HESS R, KEMPF F, SCHILLING K. Trajectory planning for car-like robots using rapidly exploring random trees[J]. IFAC Proceedings Volumes, 2013, 46(29): 44-49 doi: 10.3182/20131111-3-KR-2043.00018
    [62] SIMON D. The application of neural networks to optimal robot trajectory planning[J]. Robotics and Autonomous Systems, 1993, 11(1): 23-34 doi: 10.1016/0921-8890(93)90005-W
    [63] 李艳辉, 赵辉, 李珊珊. 一种新的Q学习算法在机械臂轨迹规划中的应用[J]. 吉林大学学报, 2013, 31(1): 90-94 doi: 10.3969/j.issn.1671-5896.2013.01.014

    LI Y H, ZHAO H, LI S S. New Q-learning algorithm for trajectory plan of manipulator[J]. Journal of Jilin University, 2013, 31(1): 90-94 (in Chinese) doi: 10.3969/j.issn.1671-5896.2013.01.014
    [64] YIN S B, JI W, WANG L H. A machine learning based energy efficient trajectory planning approach for industrial robots[J]. Procedia CIRP, 2019, 81: 429-434 doi: 10.1016/j.procir.2019.03.074
    [65] WU Y H, YU Z C, LI C Y, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot[J]. Aerospace Science and Technology, 2020, 98: 105657 doi: 10.1016/j.ast.2019.105657
    [66] BUREERAT S, PHOLDEE N, RADPUKDEE T, et al. Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning[J]. Expert Systems with Applications, 2019, 136: 133-144 doi: 10.1016/j.eswa.2019.06.033
    [67] SARAVANAN R, RAMABALAN S, BALAMURUGAN C, et al. Evolutionary trajectory planning for an industrial robot[J]. International Journal of Automation and Computing, 2010, 7(2): 190-198 doi: 10.1007/s11633-010-0190-8
    [68] BOSCARIOL P, RICHIEDEI D. Robust point-to-point trajectory planning for nonlinear underactuated systems: Theory and experimental assessment[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 256-265 doi: 10.1016/j.rcim.2017.10.001
    [69] KOHRT C, STAMP R, PIPE A G, et al. An online robot trajectory planning and programming support system for industrial use[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 71-79 doi: 10.1016/j.rcim.2012.07.010
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  2724
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-22
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回