留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鸟巢结构式汽车免充气轮胎设计及性能分析

向仲兵 安子军 刘涛

向仲兵, 安子军, 刘涛. 鸟巢结构式汽车免充气轮胎设计及性能分析[J]. 机械科学与技术, 2020, 39(11): 1782-1787. doi: 10.13433/j.cnki.1003-8728.20190328
引用本文: 向仲兵, 安子军, 刘涛. 鸟巢结构式汽车免充气轮胎设计及性能分析[J]. 机械科学与技术, 2020, 39(11): 1782-1787. doi: 10.13433/j.cnki.1003-8728.20190328
Xiang Zhongbing, An Zijun, Liu Tao. Design and Performance Analysis of Car Nest Structural Non-pneumatic Tire[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1782-1787. doi: 10.13433/j.cnki.1003-8728.20190328
Citation: Xiang Zhongbing, An Zijun, Liu Tao. Design and Performance Analysis of Car Nest Structural Non-pneumatic Tire[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1782-1787. doi: 10.13433/j.cnki.1003-8728.20190328

鸟巢结构式汽车免充气轮胎设计及性能分析

doi: 10.13433/j.cnki.1003-8728.20190328
基金项目: 

秦皇岛燕大现代集成制造技术有限公司项目 2017018

详细信息
    作者简介:

    向仲兵(1995-), 硕士研究生, 研究方向为汽车免充气车轮动态特性分析, 1305917153@qq.com

    通讯作者:

    安子军, 教授, 博士生导师, zjan@ysu.edu.cn

  • 中图分类号: TQ336.1;O242.21

Design and Performance Analysis of Car Nest Structural Non-pneumatic Tire

  • 摘要: 根据鸟巢结构原理,设计一种新型鸟巢结构式免充气轮胎,建立了该免充气轮胎的三维分析模型。应用ABAQUS有限元仿真计算的免充气轮胎下沉量与实验值进行了对比分析,以验证其可行性。利用其下沉特性,分析该免充气轮胎的径向弹性性能,并与充气轮胎的径向弹性性能进行对比分析。利用有限元仿真方法研究了不同阵列数的鸟巢结构式免充气轮胎的压力分布,并进行了特性规律和影响因素分析。结果表明,随着载荷增大,免充气轮胎和充气轮胎的下沉量相近,并且改变辐条阵列数可满足免充气轮胎不同径向刚度的要求,阵列数较大的免充气轮胎在较大下沉量时接地压力连续。
  • 图  1  免充气轮胎

    图  2  鸟巢结构式免充气轮胎设计方案

    图  3  阵列40且幅条厚度为1.25 mm的免充气轮胎下沉量分析

    图  4  阵列不同时,下沉量及径向刚度与负荷关系

    图  5  接地压力分析

  • [1] 慕容丰.轮胎保养那些事[J].汽车与安全, 2016, (11):116-118 http://qikan.cqvip.com/Qikan/Article/Detail?id=668824493

    Mu R F. Tire maintenance[J]. Car and Safety, 2016, (11):116-118(in Chinese) http://qikan.cqvip.com/Qikan/Article/Detail?id=668824493
    [2] Veeramurthy M. Modeling, finite element analysis, and optimization of non-pneumatic tire (NPT) for the minimization of rolling resistance[D]. Clemson: Clemson University, 2011
    [3] Rugsaj R, Suvanjumrat C. Proper radial spokes of non-pneumatic tire for vertical load supporting by finite element analysis[J]. International Journal of Automotive Technology, 2019, 20(4):801-812 doi: 10.1007/s12239-019-0075-y
    [4] Fadel G M, Ju J, Michaelraj A, et al. Honeycomb structures for high shear flexure; US, 2011/0030866 A1[P]. 2011-02-10
    [5] 赵冬梅.聚氨酯轮胎与橡胶轮胎性能对比[J].轮胎工业, 2013, 33(2):67-72 http://d.wanfangdata.com.cn/Periodical/ltgy201302001

    Zhao D M. Performance comparison between polyurethane tires and rubber tires[J]. Tire Industry, 2013, 33(2):67-72(in Chinese) http://d.wanfangdata.com.cn/Periodical/ltgy201302001
    [6] 黄京城, 王伟.免充气轮胎与子午线轮胎的有限元分析对比[J].橡胶工业, 2016, 63(1):31-35 http://d.wanfangdata.com.cn/Periodical/xjgy201601006

    Huang J C, Wang W. Comparison of non-pneumatic tire and radial tire by finite element simulation[J]. China Rubber Industry, 2016, 63(1):31-35(in Chinese) http://d.wanfangdata.com.cn/Periodical/xjgy201601006
    [7] Li B, Zhao Y Q, Zang L G. Closed-form solution of curved beam model of elastic mechanical wheel[J]. Journal of Vibroengineering, 2014, 16(8):3951-3962 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=100220706&site=ehost-live
    [8] 岳红旭, 赵又群.一种新型安全车轮的非线性有限元分析[J].中国机械工程, 2012, 23(11):1380-1385 http://www.cqvip.com/QK/93419A/201211/42169321.html

    Yue H X, Zhao Y Q. Nonlinear finite element analysis of a new safety wheel[J]. China Mechanical Engineering, 2012, 23(11):1380-1385(in Chinese) http://www.cqvip.com/QK/93419A/201211/42169321.html
    [9] 臧利国, 赵又群, 李波, 等.非充气机械弹性车轮接地特性试验研究[J].汽车工程, 2016, 38(3):350-355 http://www.cqvip.com/QK/91525X/20163/668547734.html

    Zang L G, Zhao Y Q, Li B, et al. An experimental study on the ground contact characteristics of non-pneumatic mechanical elastic wheel[J]. Automotive Engineering, 2016, 38(3):350-355(in Chinese) http://www.cqvip.com/QK/91525X/20163/668547734.html
    [10] 赵又群, 白毅强, 叶超, 等.机械弹性车轮静动态特性研究[J].中国机械工程, 2019, 30(19):2306-2312

    Zhao Y Q, Bai Y Q, Ye C, et al. Study on static and dynamic characteristics of mechanical elastic wheels[J]. China Mechanical Engineering, 2019, 30(19):2306-2312(in Chinese)
    [11] 安子军, 刘涛.一种鸟巢结构式免充气轮胎; 中国, 108128087A[P].2018-06-08

    An Z J, Liu T. Inflation-free tire with bird nest structure; CN, 108128087A[P]. 2018-06-08(in Chinese)
    [12] Krmela J, Beneš L, Krmelová V. Tire experiments on static adhesor for obtaining the radial stiffness value[J]. Periodica Polytechnica Transportation Engineering, 2014, 42(2):167-172 doi: 10.3311/PPtr.7224
    [13] 张天华, 王伟.免充气轮胎结构的有限元分析[J].弹性体, 2017, 27(1):23-26 http://d.wanfangdata.com.cn/Periodical/txt201701006

    Zhang T H, Wang W. Finite element analysis of non-pneumatic tire[J]. Elastomer, 2017, 27(1):23-26(in Chinese) http://d.wanfangdata.com.cn/Periodical/txt201701006
    [14] Ju J, Kim D M, Kim K. Flexible cellular solid spokes of a non-pneumatic tire[J]. Composite Structures, 2012, 94(8):2285-2295 doi: 10.1016/j.compstruct.2011.12.022
    [15] 王伟, 邓涛, 赵树高.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品, 2004, 25(4):8-10 http://d.wanfangdata.com.cn/Periodical/xjgy201104009

    Wang W, Deng T, Zhao S G. Determination for material constants of rubber Mooney-Rivlin model[J]. Special Purpose Rubber Products, 2004, 25(4):8-10(in Chinese) http://d.wanfangdata.com.cn/Periodical/xjgy201104009
    [16] 刘肖英, 何雪涛, 邓世涛, 等.蜂窝密度对蜂窝塑料轮胎性能的影响[J].塑料, 2014, 43(6):97-100 http://d.wanfangdata.com.cn/Periodical/sl201406028

    Liu X Y, He X T, Deng S T, et al. Influence of cellular density on performance of honeycomb tire[J]. Plastic, 2014, 43(6):97-100(in Chinese) http://d.wanfangdata.com.cn/Periodical/sl201406028
  • 加载中
图(5)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  66
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回