留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法

杨静 胡志伟 刘栋 张育飞

杨静, 胡志伟, 刘栋, 张育飞. 微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法[J]. 机械科学与技术, 2020, 39(11): 1788-1793. doi: 10.13433/j.cnki.1003-8728.20190326
引用本文: 杨静, 胡志伟, 刘栋, 张育飞. 微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法[J]. 机械科学与技术, 2020, 39(11): 1788-1793. doi: 10.13433/j.cnki.1003-8728.20190326
Yang Jing, Hu Zhiwei, Liu Dong, Zhang Yufei. Model for Fatigue Damage and Numerical Simulation Method of Cracks for Polycrystalline Material under Microstructure[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1788-1793. doi: 10.13433/j.cnki.1003-8728.20190326
Citation: Yang Jing, Hu Zhiwei, Liu Dong, Zhang Yufei. Model for Fatigue Damage and Numerical Simulation Method of Cracks for Polycrystalline Material under Microstructure[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1788-1793. doi: 10.13433/j.cnki.1003-8728.20190326

微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法

doi: 10.13433/j.cnki.1003-8728.20190326
基金项目: 

陕西省技术创新引导专项基金项目 2019QYPY-073

西安市科技计划项目 2017080CG/RC043(XALG036)

详细信息
    作者简介:

    杨静(1971-), 副教授, 博士, 研究方向为机电系统检测与控制, yjzhd@163.com

  • 中图分类号: TG156

Model for Fatigue Damage and Numerical Simulation Method of Cracks for Polycrystalline Material under Microstructure

  • 摘要: 考虑多晶材料疲劳行为受晶粒拓扑结构的影响,建立了多晶材料Voronoi镶嵌的有限元微观结构模型,并在Voronoi边界插入内聚力单元模拟晶界特性。在此基础上,基于Abaqus双线性内聚力本构关系,建立了内聚力单元的疲劳累积损伤模型,定义了损伤变量,损伤判据以及损伤规律;通过Abaqus UMAT(User-defined material mechanical behavior)子程序编写了内聚力单元疲劳损伤的数值计算程序,实现了对微观结构下材料滚动接触疲劳裂纹萌生与扩展的行为模拟。以滚子与滚道的接触疲劳分析为例,将数值模拟结果与实测结果相比,表明了该数值仿真方法模拟多晶材料裂纹形成和扩展的有效性。
  • 图  1  双线性本构关系

    图  2  单元疲劳退化

    图  3  单元损伤演化

    图  4  滚子与滚道接触

    图  5  材料微观模型

    图  6  滚道载荷

    图  7  内聚力单元疲劳计算过程

    图  8  裂纹扩展与应力变化

    图  9  裂纹仿真与实验结果比较

    图  10  牵引系数对裂纹的影响

  • [1] 雍占福.磁流变弹性体的制备与疲劳断裂机理研究[D].山东青岛: 青岛科技大学, 2018

    Yong Z F. Preparation of magnetorheological elastomers and fatigue fracture mechanism[D]. Shangdong Qingdao: Qingdao University of Science & Technology, 2018(in Chinese)
    [2] 尚德广."复杂载荷下的材料或结构疲劳损伤与寿命预测"专题序言[J].装备环境工程, 2018, 15(12):9-10 http://www.cnki.com.cn/Article/CJFDTotal-JSCX201812002.htm

    Sang D G. Introduction to ″fatigue damage and life prediction of materials or structures under complex loads″[J]. Equipment Environmental Engineering, 2018, 15(12):9-10(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JSCX201812002.htm
    [3] 刘铭鑫.深沟球轴承疲劳裂纹引起的滚动接触疲劳失效研究[D].重庆: 重庆大学, 2017

    Liu M X. The research of crack rolling contact fatigue in deep groove ball bearing[D]. Chongqing: Chongqing University, 2017(in Chinese)
    [4] Sadeghi F, Jalalahmadi B, Slack T S, et al. A review of rolling contact fatigue[J]. Journal of Tribology, 2009, 131(4):041403. doi: 10.1115/1.3209132
    [5] 苗婷, 苗张木, 冷晓畅.基于内聚力模型的X65管线钢稳定裂纹扩展研究[J].船舶力学, 2017, 21(2):192-200 http://www.cnki.com.cn/Article/CJFDTotal-CBLX201702009.htm

    Miao T, Miao Z M, Leng X C. Study of stable crack growth through X65QO pipeline steel using cohesive zone modeling[J]. Journal of Ship Mechanics, 2017, 21(2):192-200(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-CBLX201702009.htm
    [6] 张帆, 赵建平.内聚力单元在Voronoi元胞的晶间断裂模拟中的应用[J].组合机床与自动化加工技术, 2013, (11):26-29, 34 http://www.cqvip.com/QK/92879X/201311/47822741.html

    Zhang F, Zhao J P. The application of cohesive elements in numerical simulations of the intergranular fracture in Voronoi cellular models[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013, (11):26-29, 34(in Chinese) http://www.cqvip.com/QK/92879X/201311/47822741.html
    [7] 朱杰, 薛璞, 李国琛.疲劳载荷下复合材料分层损伤扩展的数值模拟方法[J].机械科学与技术, 2015, 34(9):1424-1426 doi: 10.13433/j.cnki.1003-8728.2015.0922

    Zhu J, Xue P, Li G C. Numerical simulation method of delamination in laminated composite under fatigue loading[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9):1424-1426(in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0922
    [8] Slack T, Sadeghi F. Cohesive zone modeling of intergranular fatigue damage in rolling contacts[J]. Tribology International, 2011, 44(7-8):797-804 doi: 10.1016/j.triboint.2011.02.003
    [9] Jemblie L, Olden V, Mainçon P, et al. Cohesive zone modelling of hydrogen induced cracking on the interface of clad steel pipes[J]. International Journal of Hydrogen Energy, 2017, 42(47):28622-28634 doi: 10.1016/j.ijhydene.2017.09.051
    [10] 桑元成.内聚力和虚拟裂纹闭合法在裂纹扩展数值模拟中的应用研究[D].兰州: 兰州理工大学, 2017

    Sang Y C. Application of CZM and VCCT methods in crack propagation numerical simulation[D]. Lanzhou: Lanzhou University of Technology, 2017(in Chinese)
    [11] Luther T, Könke C. Analysis of crack initiation and propagation in polycrystalline meso and microstructures of metal materials[M]//Motasoares C A, Martins J A C, Rodrigues H C, et al. Ⅲ European Conference on Computational Mechanics. Dordrecht: Springer, 2006: 433
    [12] Espinosa H D, Zavattieri P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I:theory and numerical implementation[J]. Mechanics of Materials, 2003, 35(3-6):333-364 http://www.sciencedirect.com/science/article/pii/S0167663602002855
    [13] 张晶.基于Voronoi有限元方法的滚动轴承疲劳寿命分析[D].昆明: 昆明理工大学, 2017

    Zhang J. A Voronoi finite element method of fatigue life analysis of rolling bearings[D]. Kunming: Kunming University of Science and Technology, 2017(in Chinese)
    [14] Benedetti I, Gulizzi V. A grain-scale model for high-cycle fatigue degradation in polycrystalline materials[J]. International Journal of Fatigue, 2018, 116:90-105. doi: 10.1016/j.ijfatigue.2018.06.010
    [15] 谢俊杰, 柳小勤, 伍星, 等.滚动轴承接触疲劳内部裂纹扩展有限元分析[J].机械科学与技术, 2020, 39(3):350-355 doi: 10.13433/j.cnki.1003-8728.20190132

    Xie J J, Liu X Q, Wu X, et al. Finite element analysis of internal crack propagation induced by contact fatigue of rolling bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3):350-355(in Chinese) doi: 10.13433/j.cnki.1003-8728.20190132
    [16] Ghodrati M, Ahmadian M, Mirzaeifar R. Modeling of rolling contact fatigue in rails at the microstructural level[J]. Wear, 2018, 406-407:205-217 doi: 10.1016/j.wear.2018.04.016
    [17] Khoramishad H, Crocombe A D, Katnam K B, et al. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model[J]. International Journal of Fatigue, 2010, 32(7):1146-1158 doi: 10.1016/j.ijfatigue.2009.12.013
    [18] 吴邵强.港口起重机回转支承的疲劳研究[D].武汉: 武汉理工大学, 2013

    Wu S Q. Study of fatigue on slewing bearing in the port crane[D]. Wuhan: Wuhan University of Technology, 2013(in Chinese)
    [19] Frolish M F, Fletcher D I, Beynon J H. A quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(11):1073-1086 doi: 10.1046/j.1460-2695.2002.00601.x/pdf
    [20] Ekberg A, Kabo E. Fatigue of railway wheels and rails under rolling contact and thermal loading-an overview[J]. Wear, 2005, 258(7-8):1288-1300 doi: 10.1016/j.wear.2004.03.039
  • 加载中
图(10)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  166
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回