留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动汽车复合能源系统能量管理策略研究

胡杰 刘迪 杜常清 颜伏伍

胡杰,刘迪,杜常清, 等. 电动汽车复合能源系统能量管理策略研究[J]. 机械科学与技术,2020,39(10):1606-1614 doi: 10.13433/j.cnki.1003-8728.20190303
引用本文: 胡杰,刘迪,杜常清, 等. 电动汽车复合能源系统能量管理策略研究[J]. 机械科学与技术,2020,39(10):1606-1614 doi: 10.13433/j.cnki.1003-8728.20190303
Hu Jie, Liu Di, Du Changqing, Yan Fuwu. Study on Energy Management Strategy of Hybrid Energy Storage System for Electric Vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1606-1614. doi: 10.13433/j.cnki.1003-8728.20190303
Citation: Hu Jie, Liu Di, Du Changqing, Yan Fuwu. Study on Energy Management Strategy of Hybrid Energy Storage System for Electric Vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1606-1614. doi: 10.13433/j.cnki.1003-8728.20190303

电动汽车复合能源系统能量管理策略研究

doi: 10.13433/j.cnki.1003-8728.20190303
基金项目: 国家自然科学基金项目(51775393)与柳州市科技计划项目(2018BC20501)资助
详细信息
    作者简介:

    胡杰(1984−),副教授,博士生导师,博士,研究方向为汽车控制与诊断、车联网与大数据,auto_hj@163.com

  • 中图分类号: U469.72

Study on Energy Management Strategy of Hybrid Energy Storage System for Electric Vehicles

  • 摘要: 针对电动汽车单一动力电池功率密度低、循环寿命短、接收暂态功率等问题,设计了由动力电池和超级电容组成的复合能源系统,提出了基于小波变换-模糊控制的能量管理策略,并对不同分解层数的小波变换进行评价和选择。该控制策略利用小波变换将需求功率分解成低频成分和高频成分,并根据能量源的动态响应特性进行分配,避免动力电池接收暂态功率;为了充分利用超级电容“削峰填谷”的作用来提高电池的性能和循环寿命,采用模糊控制将超级电容的荷电状态(State of charge, SOC)维持在合适的范围内。建立MATLAB/Simulink仿真模型基于随机组合的循环工况验证所提策略的有效性,并与传统的控制策略进行比较。仿真结果表明:采用所提出的能量管理策略可以有效地减少峰值电流对动力电池的冲击,并且相比于单一电源的电动汽车还可以将能量利用率提高5.96%,电池的最大输出电流降低了57.1%,电池的温升降低了35.3%。
  • 图  1  复合能源系统的拓扑结构

    图  2  部件模型

    图  3  逻辑门限控制策略流程图

    图  4  Haar小波分解和重构模型

    图  5  滑动窗口移动示意图

    图  6  模糊逻辑控制模型

    图  7  模糊规则输出界面

    图  8  能量管理策略框架图

    图  9  仿真循环工况

    图  10  复合能源系统动力电池

    图  11  复合能源系统超级电容

    图  12  电池工作温度变化

    表  1  复合能源系统电动汽车主要参数

    部件名称参数名称数值
    整车 迎风面积 2.19 m2
    车轮滚动半径 0.262 m
    空气阻力系数 0.32
    滚阻系数 0.02
    主减速比 5.67
    镍氢动力电池 额定电压 12 V
    容量 90 Ah
    数量 27
    Maxwell PC2500
    超级电容
    额定电压 2.7 V
    容量 1000 F
    数量 119
    下载: 导出CSV

    表  2  复合能源电动汽车动力性能

    名称最大速度/
    (km·h−1)
    0~50 km/h
    加速时间/s
    最大爬
    坡度/%
    续驶里
    程/km
    性能需求 >120 <5 >20(50 km/h) >170
    匹配结果 149 2.8 32.4 174.6
    下载: 导出CSV

    表  3  典型循环工况的能量源性能需求

    性能参数NYCCChinaUDDSNEDCHWFET
    正能量需求/kJ 1680.36 7266.48 8093.61 7266.99 10336.5
    负能量需求/kJ −659.13 −2523.82 −2134.61 −1395.64 −613.31
    正平均功率/kW 6.72 11.39 9.79 10.18 14.79
    负平均功率/kW −4.74 −8.56 −7.52 −8.07 −10.05
    正峰值功率/kW 40.64 44.44 44.86 46.69 37.00
    负峰值功率/kW −23.87 −32.79 −27.90 −29.19 −39.94
    下载: 导出CSV

    表  4  不同工况下的评价参数

    工况
    分解层数
    CYC_NYCCCYC_UDDSCYC_US06
    2 0.9779 1 1
    3 0.3235 0.4903 0.4306
    4 0.1621 0.1991 0.1470
    下载: 导出CSV

    表  5  不同控制策略下电池SOC变化

    控制
    类型
    起始
    SOC
    终止
    SOC
    SOC变
    化量
    SOC相
    对变化
    百分比
    单一电源10.78960.210400
    A控制策略10.79520.20480.00562.66%
    B控制策略10.80210.19790.01255.94%
    下载: 导出CSV
  • [1] 胡建军, 郑勇, 胡志华, 等. 纯电动汽车复合储能系统参数匹配及控制策略[J]. 中国公路学报, 2018, 31(3): 142-150 doi: 10.3969/j.issn.1001-7372.2018.03.016

    Hu J J, Zheng Y, Hu Z H, et al. Parameter matching and control strategies of hybrid energy storage system for pure electric vehicle[J]. China Journal of Highway and Transport, 2018, 31(3): 142-150 (in Chinese doi: 10.3969/j.issn.1001-7372.2018.03.016
    [2] Song Z Y, Hofmann H, Li J Q, et al. Energy management strategies comparison for electric vehicles with hybrid energy storage system[J]. Applied Energy, 2014, 134: 321-331 doi: 10.1016/j.apenergy.2014.08.035
    [3] 罗玉涛, 刘秀田, 梁伟强, 等. 延长锂离子电池寿命的电动汽车复合电源设计[J]. 华南理工大学学报, 2016, 44(3): 51-59

    Luo Y T, Liu X T, Liang W Q, et al. Design of hybrid power system for prolonging lifespan of lithium-ion battery applied to electric vehicles[J]. Journal of South China University of Technology, 2016, 44(3): 51-59 (in Chinese
    [4] 宋传学, 周放, 肖峰. 基于动态规划的复合电源能量管理优化[J]. 吉林大学学报, 2017, 47(1): 8-14

    Song C X, Zhou F, Xiao F. Energy management optimization of hybrid energy storage system (HESS) based on dynamic programming[J]. Journal of Jilin University, 2017, 47(1): 8-14 (in Chinese
    [5] 宋传学, 周放, 肖峰, 等. 基于凸优化的车载复合电源参数匹配[J]. 机械工程学报, 2017, 53(16): 44-51 doi: 10.3901/JME.2017.16.044

    Song C X, Zhou F, Xiao F, et al. Parameter matching of on-board hybrid energy storage system based on convex optimization method[J]. Journal of Mechanical Engineering, 2017, 53(16): 44-51 (in Chinese doi: 10.3901/JME.2017.16.044
    [6] Rade M R, Dhamal S S. Battery-ultracapacitor combination used as energy storage system in electric vehicle[C]//Proceedings of 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology. Computer Science and Technology. Mandya, India: IEEE, 2015: 230-234.
    [7] Gao C, Zhao J, Wu J, et al. Optimal fuzzy logic based energy management strategy of battery/supercapacitor hybrid energy storage system for electric vehicles[C]//Proceedings of the 2016 12th World Congress on Intelligent Control and Automation. Guilin, China: IEEE, 2016: 98-102.
    [8] Song Z Y, Hofmann H, Li J Q, et al. Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J]. Applied Energy, 2015, 139: 151-162 doi: 10.1016/j.apenergy.2014.11.020
    [9] Ettihir K, Boulon L, Agbossou K. Optimization-based energy management strategy for a fuel cell/battery hybrid power system[J]. Applied Energy, 2016, 163: 142-153 doi: 10.1016/j.apenergy.2015.10.176
    [10] Zhang X, Mi C. 车辆能量管理: 建模、控制与优化[M]. 张希, 米春亭, 译. 北京: 机械工业出版社, 2013

    Zhang X, Mi C. Vehicle power management: modeling, control and optimization[M]. Zhang X, Mi C T, trans. Beijing: China Machine Press, 2013 (in Chinese)
    [11] Ibrahim M, Jemei S, Wimmer G, et al. Selection of mother wavelet and decomposition level for energy management in electrical vehicles including a fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15823-15833 doi: 10.1016/j.ijhydene.2015.06.055
    [12] Jeong K S, Lee W Y, Kim C S. Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics[J]. Journal of Power Sources, 2005, 145(2): 319-326 doi: 10.1016/j.jpowsour.2005.01.076
    [13] 曾小华, 宫维钧. ADVISOR 2002电动汽车仿真与再开发应用[M]. 2版. 北京: 机械工业出版社, 2017

    Zeng X H, Gong W J. ADVISOR 2002 simulation and redevelopment of electric vehicles[M]. 2ne ed. Beijing: China Machine Press, 2017 (in Chinese)
    [14] 高超. 电动汽车复合电源能量管理策略与硬件在环实验研究[D]. 长春: 吉林大学, 2017.

    Gao C. Research on energy management strategy of hybrid energy storage system and HIL test for electric vehicles[D]. Changchun: Jilin University, 2017 (in Chinese).
    [15] Mao P L, Aggarwal R K. A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 654-660 doi: 10.1109/61.956753
    [16] 陈菲. 基于小波算法的瞬态功率平抑方法研究[D]. 南京: 南京航空航天大学, 2016.

    Chen F. Research on the transient power suppression method based on wavelet algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
    [17] 黄相. 电动汽车复合电源的实时小波—模糊能量管理策略研究[D]. 南京: 南京农业大学, 2016.

    Huang X. Study on real time wavelet-fuzzy energy management strategy for hybrid power of electric vehicle[D]. Nanjing: Nanjing Agricultural University, 2016 (in Chinese).
    [18] 张泽辉, 高海波, 管聪, 等. 典型工况下的燃料电池船舶复合储能系统设计[J]. 船舶工程, 2018, 40(8): 100-105

    Zhang Z H, Gao H B, Guan C, et al. Design of hybrid energy storage system for fuel cell ship based on typical load profile[J]. Ship Engineering, 2018, 40(8): 100-105 (in Chinese
    [19] 欧阳, 周舟, 唐国强, 等. 自适应路况的插电式混合动力汽车能量管理策略[J]. 中国公路学报, 2016, 29(9): 152-158 doi: 10.3969/j.issn.1001-7372.2016.09.020

    Ou Y, Zhou Z, Tang G Q, et al. Control strategy for plug-in hybrid electric vehicle based on self-adaptive road condition[J]. China Journal of Highway and Transport, 2016, 29(9): 152-158 (in Chinese doi: 10.3969/j.issn.1001-7372.2016.09.020
    [20] 刘秀田. 电动汽车复合电源动力储能系统设计及实验研究[D]. 广州: 华南理工大学, 2016.

    Liu X T. Power system design and experimental study on composite energy storage for EV[D]. Guangzhou: South China University of Technology, 2016 (in Chinese).
    [21] Abeywardana D B W, Hredzak B, Agelidis V G, et al. Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 1626-1637 doi: 10.1109/TPEL.2016.2552198
    [22] 梁嘉羿, 王友仁, 黄薛, 等. 蓄电池能量均衡技术研究综述[J]. 机械制造与自动化, 2018, 47(3): 26-30

    Liang J Y, Wang Y R, Huang X, et al. Research status of balancing technique for series connected battery[J]. Machine Building & Automation, 2018, 47(3): 26-30 (in Chinese
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  84
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-28
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回