留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁合金低周疲劳损伤演化模型探讨

陈凌

陈凌. 镁合金低周疲劳损伤演化模型探讨[J]. 机械科学与技术, 2020, 39(7): 1114-1120. doi: 10.13433/j.cnki.1003-8728.20190235
引用本文: 陈凌. 镁合金低周疲劳损伤演化模型探讨[J]. 机械科学与技术, 2020, 39(7): 1114-1120. doi: 10.13433/j.cnki.1003-8728.20190235
Chen Ling. Discussion of Models for Low Cycle Fatigue Damage Evolution of Magnesium Alloys[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1114-1120. doi: 10.13433/j.cnki.1003-8728.20190235
Citation: Chen Ling. Discussion of Models for Low Cycle Fatigue Damage Evolution of Magnesium Alloys[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1114-1120. doi: 10.13433/j.cnki.1003-8728.20190235

镁合金低周疲劳损伤演化模型探讨

doi: 10.13433/j.cnki.1003-8728.20190235
基金项目: 

重庆市教委科学技术研究项目 KJQN201800816

重庆市社会事业与民生保障科技创新专项项目 cstc2017shmsA90009

重庆市基础科学与前沿技术研究项目 cstc2017jcyjAX0146

详细信息
    作者简介:

    陈凌(1979-), 教授级高级工程师, 博士, 研究方向为材料及结构疲劳、腐蚀、断裂及损伤评估研究, chenling1618@ctbu.edu.cn

  • 中图分类号: O346.5;TG115.5

Discussion of Models for Low Cycle Fatigue Damage Evolution of Magnesium Alloys

  • 摘要: 通过铸造镁合金AZ91D和变形镁合金AZ31B室温环境应力控制的低周疲劳试验,基于连续损伤力学,选取平均应变的变化作为损伤变量,将镁合金的低周疲劳损伤演化划分为损伤初始阶段、损伤稳定阶段和循环末期的快速损伤阶段,各阶段的损伤分别以形核损伤、微裂纹损伤和主裂纹损伤为主。在此基础上建立了三阶段损伤模型和两阶段损伤模型,并用上述损伤模型进行了镁合金的低周疲劳损伤演化分析。研究结果表明:相对于经典的低周疲劳损伤模型,采用三阶段损伤模型和两阶段损伤模型所得损伤曲线与试验结果符合较好,能较好地反映镁合金低周疲劳损伤的演化过程。
  • 图  1  试验用疲劳试样示意图

    图  2  铸造镁合金AZ91D平均应变及低周疲劳损伤随寿命分数变化

    图  3  变形镁合金AZ31B平均应变及低周疲劳损伤随寿命分数变化

    图  4  铸造镁合金AZ91D低周疲劳损伤模型拟合图

    图  5  变形镁合金AZ31B低周疲劳损伤模型拟合图

    图  6  Dm的材料常数k随名义应力幅变化及拟合图

    图  7  Dmic的材料常数k随名义应力幅变化及拟合图

    图  8  Dmac的材料常数b随名义应力幅变化及拟合图

    表  1  铸造镁合金AZ91D与变形镁合金AZ31B室温25 ℃低周疲劳试验数据及结果

    试样 材料 加载频率/Hz 名义应力幅σa/MPa 疲劳寿命Nf
    1-1# AZ91D 3 80 14 752
    1-2# AZ91D 3 90 5 124
    1-3# AZ91D 3 100 2 562
    1-4# AZ91D 3 110 512
    1-5# AZ91D 3 120 61
    2-1# AZ31B 5 75 23 524
    2-2# AZ31B 5 80 10 579
    2-3# AZ31B 5 90 6 376
    2-4# AZ31B 5 100 1 018
    2-5# AZ31B 5 110 113
    下载: 导出CSV

    表  2  铸造镁合金AZ91D低周疲劳损伤模型拟合结果

    试样 经典低周疲劳损伤模型(式(4)) 两阶段损伤模型(式(13)) 三阶段损伤模型(式(11))
    k Di m n k Di m n Ds k b
    1-1# 0.0396 0.084 285.7926 0.5913 0.0118 0.084 285.7926 0.5913 0.0801 0.1786 3208.4561
    1-2# 0.0599 0.0919 45.5061 0.453 0.0227 0.0919 45.5061 0.453 0.0982 0.1995 1159.8705
    1-3# 0.0723 0.0887 150.2992 0.6446 0.036 0.0887 150.2992 0.6446 0.1588 0.2655 634.3669
    1-4# 0.0964 0.085 44.1088 0.5899 0.051 0.085 44.1088 0.5899 0.167 0.3309 114.4265
    1-5# 0.1099 0.0984 3.4008 0.2969 0.0525 0.0984 3.4008 0.2969 0.0998 0.3710 36.4015
    下载: 导出CSV

    表  3  变形镁合金AZ31B低周疲劳损伤模型结果

    试样 经典低周疲劳损伤模型(式(4)) 两阶段损伤模型(式(13)) 三阶段损伤模型(式(11))
    k Di m n k Di m n Ds k b
    2-1# 0.054 0.0679 7.9867 0.2672 0.0318 0.0679 7.9867 0.2672 0.1516 0.3431 6873.389
    2-2# 0.0645 0.0638 6.2804 0.255 0.0442 0.0638 6.2804 0.255 0.1807 0.4008 1562.9689
    2-3# 0.0755 0.0629 7.0574 0.2827 0.0531 0.0629 7.0574 0.2827 0.2007 0.4231 1199.4738
    2-4# 0.1211 0.0955 6.9256 0.4214 0.0746 0.0955 6.9256 0.4214 0.1886 0.4901 203.5928
    2-5# 0.1496 0.0701 10.3944 0.6186 0.1026 0.0701 10.3944 0.6186 0.2465 0.5142 85.2423
    下载: 导出CSV
  • [1] Li H Z, Lv F, Xiao Z Y, et al. Low-cycle fatigue behavior of a cast Mg-Y-Nd-Zr alloy by T6 heat treatment[J]. Materials Science and Engineering:A, 2016, 676:377-384 doi: 10.1016/j.msea.2016.09.001
    [2] Yu D L, Zhang D F, Sun J, et al. High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy[J]. Materials Science and Engineering:A, 2016, 662:1-8 doi: 10.1016/j.msea.2016.02.079
    [3] Chen G, Gao J W, Cui Y, et al. Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT[J]. Journal of Alloys and Compounds, 2018, 735:536-546 doi: 10.1016/j.jallcom.2017.11.141
    [4] Pan J P, Peng L M, Fu P H, et al. The effects of grain size and heat treatment on the deformation heterogeneities and fatigue behaviors of GW83K magnesium alloys[J]. Materials Science and Engineering:A, 2019, 754:246-257 doi: 10.1016/j.msea.2019.03.063
    [5] Wang C, Luo T J, Yang Y S. Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates[J]. Journal of Magnesium and Alloys, 2016, 4(3):181-187 doi: 10.1016/j.jma.2016.07.002
    [6] 刘新东, 郝际平.连续介质损伤力学[M].北京:国防工业出版社, 2011

    Liu X D, Hao J P. Continuum damage mechanics[M]. Beijing:National Defense Industry Press, 2011(in Chinese)
    [7] 郑修麟, 王泓, 鄢君辉, 等.材料疲劳理论与工程应用[M].北京:科学出版社, 2013

    Zheng X L, Wang H, Yan J H, et al. Fatigue theory and engineering applications of materials[M]. Beijing:Science Press, 2013(in Chinese)
    [8] Lin Y C, Liu Z H, Chen X M, et al. Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-controlled cyclic loadings[J]. Computational Materials Science, 2013, 73:128-138 doi: 10.1016/j.commatsci.2013.02.023
    [9] Lin Y C, Chen X M, Liu Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J]. International Journal of Fatigue, 2013, 48:122-132 doi: 10.1016/j.ijfatigue.2012.10.010
    [10] Gryguc A, Behravesh S B, Shaha S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys[J]. International Journal of Fatigue, 2018, 116:429-438 doi: 10.1016/j.ijfatigue.2018.06.028
    [11] Geng C J, Wu B L, Du X H, et al. Low cycle fatigue behavior of extruded AZ31B magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1589-1594 doi: 10.1016/S1003-6326(13)62635-7
    [12] Song L H, Wu B L, Zhang L, et al. Cyclic deformation behaviors of AZ31B magnesium alloy in two different asymmetric loading manners[J]. Materials Science and Engineering:A, 2017, 689:134-141 doi: 10.1016/j.msea.2017.02.046
    [13] 宋松, 韩永典, 徐连勇, 等.基于混合硬化模型的Ti-6Al-4V低周疲劳损伤分析[J].焊接学报, 2019, 40(1):43-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjxb201901009

    Song S, Han Y D, Xu L Y, et al. Analysis on low cycle fatigue damage of Ti-6Al-4V based on combined hardening model[J]. Transactions of The China Welding Institution, 2019, 40(1):43-48(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjxb201901009
    [14] 陈凌, 张贤明, 欧阳平.一种基于连续损伤力学的低周疲劳寿命预测模型[J].中国机械工程, 2015, 26(18):2506-2510, 2517 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201518017

    Chen L, Zhang X M, Ouyang P. A life prediction model for low cycle fatigue based on continuum damage mechanics[J]. China Mechanical Engineering, 2015, 26(18):2506-2510, 2517(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201518017
    [15] 陈凌, 张贤明, 刘飞, 等.镁合金低周疲劳寿命预测模型探讨[J].中国机械工程, 2017, 28(5):512-518 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201705002

    Chen L, Zhang X M, Liu F, et al. Discussion of low cycle fatigue life prediction models for magnesium alloys[J]. China Mechanical Engineering, 2017, 28(5):512-518(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201705002
    [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 15248-2008金属材料轴向等幅低循环疲劳试验方法[S].北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 15248-2008 The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials[S]. Beijing: Chinese Standard Press, 2008(in Chinese)
    [17] 陈凌, 张贤明, 刘飞, 等.AZ91D室温环境棘轮及其低周疲劳行为[J].材料科学与工程学报, 2017, 35(5):741-746 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc201705011

    Chen L, Zhang X M, Liu F, et al. Ratcheting and low cycle fatigue behavior of AZ91D at room temperature[J]. Journal of Materials Science and Engineering, 2017, 35(5):741-746(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc201705011
    [18] Shiozawa K, Kitajima J, Kaminashi T, et al. Low-cycle fatigue deformation behavior and evaluation of fatigue life on extruded magnesium alloys[J]. Procedia Engineering, 2011, 10:1244-1249 doi: 10.1016/j.proeng.2011.04.207
    [19] Begum S, Chen D L, Xu S, et al. Low cycle fatigue properties of an extruded AZ31 magnesium alloy[J]. International Journal of Fatigue, 2009, 31(4):726-735 doi: 10.1016/j.ijfatigue.2008.03.009
    [20] 陈凌, 张贤明, 刘飞, 等.镁合金非对称应力载荷下的低周疲劳损伤演化和寿命预测[J].中国机械工程, 2019, 30(6):748-755 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201906018

    Chen L, Zhang X M, Liu F, et al. Damage evolution and life prediction of low cycle fatigue for magnesium alloys under asymmetrical stress loading[J]. China Mechanical Engineering, 2019, 30(6):748-755(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201906018
    [21] 程光旭, 韦玮, 李光哲.复合材料疲劳损伤演化的两阶段模型[J].机械工程材料, 2000, 24(5):1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgccl200005002

    Cheng G X, Wei W, Li G Z. A general two stage model for accumulation of fatigue damage in composite materials[J]. Materials for Mechanical Engineering, 2000, 24(5):1-4(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgccl200005002
    [22] 黄云云, 刘康林.超高压管道的疲劳损伤研究[J].福州大学学报, 2010, 38(4):563-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzdxxb201004020

    Huang Y Y, Liu K L. Fatigue damage study of the ultrahigh-pressure pipe line[J]. Journal of Fuzhou University, 2010, 38(4):563-567(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzdxxb201004020
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  24
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 刊出日期:  2020-07-05

目录

    /

    返回文章
    返回