留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料超声振动低损伤制孔技术研究

邱建平 陈金祥 郝浩杰

邱建平, 陈金祥, 郝浩杰. 复合材料超声振动低损伤制孔技术研究[J]. 机械科学与技术, 2020, 39(3): 484-492. doi: 10.13433/j.cnki.1003-8728.20190145
引用本文: 邱建平, 陈金祥, 郝浩杰. 复合材料超声振动低损伤制孔技术研究[J]. 机械科学与技术, 2020, 39(3): 484-492. doi: 10.13433/j.cnki.1003-8728.20190145
Qiu Jianping, Chen Jinxiang, Hao Haojie. Study on Technology of Ultrasonic Vibration Drilling of CFRP with Low Damage[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 484-492. doi: 10.13433/j.cnki.1003-8728.20190145
Citation: Qiu Jianping, Chen Jinxiang, Hao Haojie. Study on Technology of Ultrasonic Vibration Drilling of CFRP with Low Damage[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 484-492. doi: 10.13433/j.cnki.1003-8728.20190145

复合材料超声振动低损伤制孔技术研究

doi: 10.13433/j.cnki.1003-8728.20190145
详细信息
    作者简介:

    邱建平(1977-), 高级工程师, 研究方向为飞机结构装配制孔与连接技术, qiufengss@foxmail.com

  • 中图分类号: V258;TP391.9

Study on Technology of Ultrasonic Vibration Drilling of CFRP with Low Damage

  • 摘要: 为了研究碳纤维复合材料超声振动加工机理,本文提出了直角切削三维细观有限元方法并开展了手持式超声制孔实验。首先,基于直角-斜角切削转换关系构建热力耦合有限元模型进行普通和超声振动直角切削仿真,实现对制孔损伤如纤维断裂、基体破坏及纤维-基体界面脱粘的预测,研究了振动频率如幅值和频率对切削力的影响规律;然后,基于四组特殊纤维方向角的有限元仿真结果,进行了能量分析以量化不同能量耗散机制在普通和超声振动直角切削下的百分比,结合切屑形貌对比,针对为何超声振动能减小钻削力及提高制孔质量进行了剖析。最后,基于仿真获取的振动参数影响规律开展了普通钻削及超声振动钻削的对比实验,并对钻削力与亚表面损伤情况进行了对比。结果表明,基于有限元仿真获取合理的振动参数,有助于实际加工应用中减小钻削力及提高加工质量。
  • 图  1  纤维方向角为90°的直角切削细观有限元模型

    图  2  纤维轴向拉伸/压缩时的应力-应变曲线

    图  3  在不同温度及应变率条件下基体的应力-应变曲线

    图  4  不同振动幅值下的切削力变化曲线

    图  5  纤维方向角为135°的切削情况

    图  6  不同振动频率下的切削力变化曲线(a=3 μm)

    图  7  纤维方向角为90°的切削情况

    图  8  0°纤维方向角的切屑形态

    图  9  45°纤维方向角的切屑形态

    图  10  90°纤维方向角的切屑形态

    图  11  135°纤维方向角的切屑形态

    图  12  能量分析

    图  13  钻削实验平台

    图  14  刀具直径为Ø3.26 mm的瞬时钻削力对比

    图  15  刀具直径为Ø3.26 mm的钻削力局部放大

    图  16  刀具直径为Ø5 mm的瞬时钻削力对比

    图  17  刀具直径为Ø5 mm的钻削力局部放大

    图  18  电镜扫描结果(纤维方向角在90°附近)

    图  19  电镜扫描结果(纤维方向角在135°附近)

    图  20  典型纤维方向角下切削深度对能量分析的影响

    表  1  制孔工艺参数

    参数 数值
    CFRP工件 工件尺寸(mm×mm×mm) 50×40×6
    制孔工艺
    参数
    进给速度v/(μm·r-1)
    转速n/(r·min-1)
    刀具直径D/mm
    30, 40
    3 000
    Ø3.26, Ø5
    超声
    振动参数
    频率f/kHz
    幅度a/μm
    20
    3
    下载: 导出CSV
  • [1] 吴利华, 袁宇慧.先进纤维增强复合材料在大型客机上的应用现状[J].兵器材料科学与工程, 2018, 41(3):100-103 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bqclkxygc201803024

    Wu L H, Yuan Y H. Applications of advanced fiber-reinforced composite materials in large commercial aircraft[J]. Ordnance Material Science and Engineering, 2018, 41(3):100-103(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bqclkxygc201803024
    [2] 赵丽滨, 龚愉, 张建宇.纤维增强复合材料层合板分层扩展行为研究进展[J].航空学报, 2019, 40(1):522509 http://d.old.wanfangdata.com.cn/Periodical/hkxb201901013

    Zhao L B, Gong Y, Zhang J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201901013
    [3] Meng Q X, Zhang K F, Cheng H, et al. An analytical method for predicting the fluctuation of thrust force during drilling of unidirectional carbon fiber reinforced plastics[J]. Journal of Composite Materials, 2015, 49(6):699-711 doi: 10.1177/0021998314525483
    [4] Qi Z C, Zhang K F, Li Y, et al. Critical thrust force predicting modeling for delamination-free drilling of metal-FRP stacks[J]. Composite Structures, 2014, 107:604-609 doi: 10.1016/j.compstruct.2013.07.036
    [5] Sadek A, Attia M H, Meshreki M, et al. Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates[J]. CIRP Annals, 2013, 62(1):91-94 doi: 10.1016/j.cirp.2013.03.097
    [6] Bleicher F, Wiesinger G, Kumpf C, et al. Vibration assisted drilling of CFRP/metal stacks at low frequencies and high amplitudes[J]. Production Engineering, 2018, 12(2):289-296 doi: 10.1007/s11740-018-0818-z
    [7] Wang X, Wang L J, Tao J P. Investigation on thrust in vibration drilling of fiber-reinforced plastics[J]. Journal of Materials Processing Technology, 2004, 148(2):239-244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2e7b6987c3699ea46355886723aad3a1
    [8] Makhdum F, Norddin D N P, Roy A, et al. Ultrasonically assisted drilling of carbon fibre reinforced plastics[J]. Solid State Phenomena, 2012, 188:170-175 doi: 10.4028/www.scientific.net/SSP.188.170
    [9] Dong S, Liao W H, Zheng K, et al. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks[J]. International Journal of Mechanical Sciences, 2019, 151:868-876 doi: 10.1016/j.ijmecsci.2018.12.039
    [10] Slimane A, Slimane S, Kebdani S, et al. Parameters effects analysis of rotary ultrasonic machining on carbon fiber reinforced plastic (CFRP) composite using an interactive RSM Method[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2019, 13(2):521-529 doi: 10.1007/s12008-018-0518-0
    [11] Zahedi S A, Roy A, Silberschmidt V V. Modelling of vibration assisted machining f.c.c single crystal[J]. Procedia CIRP, 2015, 31:393-398 doi: 10.1016/j.procir.2015.03.029
    [12] Xu W X, Zhang L C, Wu Y B. Effect of tool vibration on chip formation and cutting forces in the machining of fiber-reinforced polymer composites[J]. Machining Science and Technology, 2016, 20(2):312-329 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10910344.2016.1168930
    [13] Xu W X, Zhang L C, Wu Y B. Elliptic vibration- assisted cutting of fibre-reinforced polymer composites: understanding the material removal mechanisms[J]. Composites Science and Technology, 2014, 92:103-111 doi: 10.1016/j.compscitech.2013.12.011
    [14] Phadnis V A, Makhdum F, Roy A, et al. Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate[J]. Procedia CIRP, 2012, 1:455-459 doi: 10.1016/j.procir.2012.04.081
    [15] 王卫滨.碳纤维复合材料超声振动辅助制孔数值模拟及实验研究[D].南昌: 南昌航空大学, 2016

    Wang W B. Numerical simulation and experimental study of ultrasonic vibration assisted drilling of carbon fiber composite material[D]. Nanchang: Nanchang Hangkong University, 2016(in Chinese)
    [16] Ning F D, Cong W L, Wang H, et al. Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1-4):1217-1229 doi: 10.1007/s00170-017-0149-9
    [17] Ning F D, Wang H, Cong W L, et al. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites[J]. Ultrasonics, 2017, 76:44-51 doi: 10.1016/j.ultras.2016.12.012
    [18] Langella A, Nele L, Maio A. A torque and thrust prediction model for drilling of composite materials[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(1):83-93 doi: 10.1016/S1359-835X(04)00177-0
    [19] Cheng H, Gao J Y, Kafka O L, et al. A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling[J]. Composites Science and Technology, 2017, 153:18-31 doi: 10.1016/j.compscitech.2017.09.028
    [20] Yan X Y, Reiner J, Bacca M, et al. A study of energy dissipating mechanisms in orthogonal cutting of UD-CFRP composites[J]. Composite Structures, 2019, 220:460-472 doi: 10.1016/j.compstruct.2019.03.090
    [21] Klinkova O, Rech J, Drapier S, et al. Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions[J]. Tribology International, 2011, 44(12):2050-2058 doi: 10.1016/j.triboint.2011.09.006
    [22] Santiuste C, Soldani X, Miguélez M H. Machining FEM model of long fiber composites for aeronautical components[J]. Composite Structures, 2010, 92(3):691-698 doi: 10.1016/j.compstruct.2009.09.021
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  171
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 刊出日期:  2020-03-05

目录

    /

    返回文章
    返回