留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进型Canfeild结构设计与运动学解算

HayatMuhammadKhan 杨建华 姜霞兵 贺亚男

HayatMuhammadKhan, 杨建华, 姜霞兵, 贺亚男. 一种改进型Canfeild结构设计与运动学解算[J]. 机械科学与技术, 2019, 38(6): 828-832. doi: 10.13433/j.cnki.1003-8728.20180258
引用本文: HayatMuhammadKhan, 杨建华, 姜霞兵, 贺亚男. 一种改进型Canfeild结构设计与运动学解算[J]. 机械科学与技术, 2019, 38(6): 828-832. doi: 10.13433/j.cnki.1003-8728.20180258
Muhammad Khan Hayat, Jianhua Yang, Xiabing Jiang, Ya'nan He. Implementation and Kinematics Calculation of a Modified Canfield Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 828-832. doi: 10.13433/j.cnki.1003-8728.20180258
Citation: Muhammad Khan Hayat, Jianhua Yang, Xiabing Jiang, Ya'nan He. Implementation and Kinematics Calculation of a Modified Canfield Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 828-832. doi: 10.13433/j.cnki.1003-8728.20180258

一种改进型Canfeild结构设计与运动学解算

doi: 10.13433/j.cnki.1003-8728.20180258
基金项目: 

国家自然科学基金项目 11474230

详细信息
    作者简介:

    HayatMuhammadKhan:Hayat Muhammad Khan (1980-), 助理教授, 博士研究生, 研究方向为机械设计与制造、检测技术与自动化装置, engrhayat@hotmail.com

    通讯作者:

    杨建华, 教授, 博士生导师, 博士, 1606261659@qq.com

  • 中图分类号: TP242.2

Implementation and Kinematics Calculation of a Modified Canfield Mechanism

  • 摘要: 设计了一种改进型Canfield机械结构,该机械结构采用旋转副代替移动副,采用扭力弹簧消除了旋转副引入的奇点,减小了结构尺寸,增强了伸缩性能,能实现全半球运动。针对这种设计利用机构的对称性,给出了一种运动学解算的简便方法,在进行运动学解算时不需要考虑奇异性问题,减少了未知数个数,简化了计算。给出了结构3D打印的实物模型及基于模型顶部安装的惯性测量单元(IMU)的模型运动姿态测试方案和带集成光电编码器的直流伺服驱动电机电机转角反馈运动姿态解算方案。对比了基于MapleSIM和Matlab的结构运动仿真计算结果和结构模型实际运动控制实验效果。结果表明,实验和仿真解算数据吻合程度好,验证了所设计结构的合理性和所提出的运动学解算方法的有效性。
  • 图  1  改进Canfield结构示意图

    图  2  改进Canfield结构分解示意图

    图  3  基于中间平面的结构顶部和底部链接运动描述

    图  4  改进型Canfield结构及实验装置

    图  5  实验装置的控制机理框图

    表  1  运动学解算结果与IMU实测结果对比

    输入角度 计算结果 验证结果
    α1=45° xtop=0 ψ=0 xtop=-0.88 ψ=-1.21°
    α2=45° ytop=0 φ=0 ytop=-1.35 φ=-1.34°
    α3=45° ztop=173.24 θ=0 ztop=174.54 θ=0.81°
    α1=30° xtop=0 ψ=0 xtop=-0.65 ψ=-0.79°
    α2=30° ytop=0 φ=0 ytop=-0.28 φ=-1.31°
    α3=30° ztop=122.5 θ=0 ztop=124.59 θ=0.24°
    α1=60° xtop=0 ψ=0 xtop=-0.26 ψ=-1.73°
    α2=60° ytop=0 φ=0 ytop=2.27 φ=-1.23°
    α3=60° ztop=212.18 θ=0 ztop=213.28 θ=-1.01°
    α1=30° xtop=31.42 ψ=0 xtop=30.69 ψ=-1.40°
    α2=60° ytop=0 φ=19.59° ytop=1.81 φ=19.00°
    α3=60° ztop=182.02 θ=0 ztop=183.56 θ=-0.84°
    α1=45° xtop=0.06 ψ=0.005° xtop=0.76 ψ=-1.02°
    α2=30° ytop=26.45 φ=0.03° ytop=28.25 φ=-1.32°
    α3=60° ztop=169.22 θ=-17.76° ztop=170.04 θ=-18.36°
    α1=45° xtop=0.06 ψ=0.005° xtop=-0.98 ψ=-0.99°
    α2=60° ytop=-26.45 φ=0.03° ytop=-24.86 φ=-1.32°
    α3=30° ztop=169.22 θ=17.76° ztop=171.61 θ=17.81°
    注:xtop, ytop, ztop单位为mm。
    下载: 导出CSV
  • [1] Gough V E, Whitehall S G. Universal tyre testing machine[C]//Proceedings of the 9th International Technical Congress. London, UK: FISITA, 1962: 117-137
    [2] Stewart D. A platform with six degrees of freedom[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1):371-386 doi: 10.1243/PIME_PROC_1965_180_029_02
    [3] Kücük S. Serial and parallel robot manipulators-kinematics, dynamics, control and optimization[M]. Croatia: InTech, 2012
    [4] Canfield S L, Reinholtz C F. Development of the carpal robotic wrist[M]//Casals A, de Almeida A T. Experimental Robotics V. Berlin, Heidelberg: Springer, 1998: 423-434
    [5] Canfield S L, Ganino A J, Salerno R J, et al. Singularity and dexterity analysis of the carpal wrist[C]//Proceedings of ASME Design Engineering and Technical Conferences. Irvine CA, USA: 1996: 96-DETC/MECH-1156
    [6] Merriam E G, Jones J E, Magleby S P, et al. Monolithic 2 DOF fully compliant space pointing mechanism[J]. Mechanical Sciences, 2013, 4(2):381-390 doi: 10.5194/ms-4-381-2013
    [7] Bashevkin E, Kenahan J, Manning B, et al. A novel hemispherical anti-twist tracking system (HATTS) for CubeSats[C]//Proceedings of 26th AIAA/USU Conference on Small Satellites SSC12-Ⅲ-5. Logan, Utah, USA: AIAA/Utah State University, 2012: 1-8
    [8] Khan H M, Yang J H, Khan Tareen S A. Locomotion patterns of a vermicular robot[C]//Proceedings of the 2nd International Conference on Robotics and Artificial Intelligence. Rawalpindi, Pakistan: IEEE, 2016: 152-157
    [9] Merlet J P. Parallel robots[M]. 2nd ed. The Netherlands: Springer, 2006
    [10] Sosa-Méndez D, Lugo-González E, Arias-Montiel M, et al. ADAMS-MATLAB co-simulation for kinematics, dynamics, and control of the Stewart-Gough platform[J]. International Journal of Advanced Robotic Systems, 2017, 14(4):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc7ba7e8b58ecc5fb7f415fe3356d364
    [11] Merlet J P. Parallel manipulators, Part Ⅰ: Theory, design, kinematics, dynamics and control[M]. Le Chesnay, France: INRIA, 1987
    [12] Craig J J. Introduction to robotics: mechanics and control[M]. 3rd ed. New Jersey USA: Pearson Prentice Hall, 2005
    [13] Hammond F L, Howe R D, Wood R J. Dexterous high-precision robotic wrist for micromanipulation[C]//Proceedings of the 16th International Conference on Advanced Robotics. Montevideo, Uruguay: IEEE, 2013: 1-8
    [14] Lee K M, Arjunan S. A three-degrees-of-freedom micromotion in-parallel actuated manipulator[J]. IEEE Transactions on Robotics and Automation, 1991, 7(5):634-641 doi: 10.1109/70.97875
    [15] Canfield S L, Soper R R, Reinholtz C F. Velocity analysis of parallel manipulators by truss transformations[J]. Mechanism and Machine Theory, 1999, 34(3):345-357 doi: 10.1016/S0094-114X(98)00033-0
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  164
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 刊出日期:  2019-06-05

目录

    /

    返回文章
    返回