留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿蜻蜓扑翼飞行器翅翼结构力学特性研究进展

蒋照华 汪超 谢鹏 袁杰 周超英

蒋照华, 汪超, 谢鹏, 袁杰, 周超英. 仿蜻蜓扑翼飞行器翅翼结构力学特性研究进展[J]. 机械科学与技术, 2018, 37(6): 971-979. doi: 10.13433/j.cnki.1003-8728.2018.0621
引用本文: 蒋照华, 汪超, 谢鹏, 袁杰, 周超英. 仿蜻蜓扑翼飞行器翅翼结构力学特性研究进展[J]. 机械科学与技术, 2018, 37(6): 971-979. doi: 10.13433/j.cnki.1003-8728.2018.0621
Jiang Zhaohua, Wang Chao, Xie Peng, Yuan Jie, Zhou Chaoying. Research Progress on Mechanical Properties of Wing Structure of Dragonflies-like Flapping Wing Micro Air Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 971-979. doi: 10.13433/j.cnki.1003-8728.2018.0621
Citation: Jiang Zhaohua, Wang Chao, Xie Peng, Yuan Jie, Zhou Chaoying. Research Progress on Mechanical Properties of Wing Structure of Dragonflies-like Flapping Wing Micro Air Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 971-979. doi: 10.13433/j.cnki.1003-8728.2018.0621

仿蜻蜓扑翼飞行器翅翼结构力学特性研究进展

doi: 10.13433/j.cnki.1003-8728.2018.0621
基金项目: 

深圳市创新环境建设计划重点实验室提升项目(ZDSYS20140508161547829)与深圳市科技计划基础研究项目(JCYJ20150625142543449)资助

详细信息
    作者简介:

    蒋照华(1991-),硕士研究生,研究方向为仿生扑翼飞行器结构设计,jnghh@qq.com

    通讯作者:

    周超英,教授,博士生导师,cyzhou@hit.edu.cn

Research Progress on Mechanical Properties of Wing Structure of Dragonflies-like Flapping Wing Micro Air Vehicle

  • 摘要: 总结了近年来蜻蜓翅翼和仿蜻蜓扑翼飞行器翅翼力学特性的研究进展,就蜻蜓翅翼形态结构与材料属性、翅翼结构力学特性、翅翼结构气动特性等方面进行了概述。根据近年发展现状,提出了关于该领域未来重点研究方向:翅翼形态结构方面,用更先进的观察仪器探究翅翼的细节特征;翅翼强度计算时,采用不同的材料属性以满足当前仿生翅翼材料的多样性;且在数值模拟计算中,计算模型需要趋于翅翼真实情况;并模拟出此前因受计算量限制而无法在计算模型中体现的翅翼细节;翅翼褶皱对翅翼结构力学特征的影响研究较少,相关领域亟待完善;此外本研究领域整体实验验证发展与数值计算相比还有一定差距,实验验证有待补足。
  • [1] 王琨琦,陈世杰,刘颖.仿生扑翼飞行器翅翼扭转机构设计[J].西安工业大学学报,2015,35(2):125-129 Wang K Q, Chen S J, Liu Y. Design of twisting mechanism of flapping-wing micro air vehicle[J]. Journal of Xi'an Technological University, 2015,35(2):125-129(in Chinese)
    [2] Xiao K W, Bai K, Wang W S, et al. Experimental study on the microstructure and nanomechanical properties of the wing membrane of dragonfly[J]. Acta Mechanica Sinica, 2007,23(3):281-285
    [3] Smith C W, Herbert R, Wootton R J, et al. The hind wing of the desert locust (Schistocerca gregaria Forskål). Ⅱ. Mechanical properties and functioning of the membrane[J]. Journal of Experimental Biology, 2000,203(19):2933-2943
    [4] Gorb S N. Serial elastic elements in the damselfly wing:mobile vein joints contain resilin[J]. Naturwissenschaften, 1999,86(11):552-555
    [5] Haas F, Gorb S, Blickhan R. The function of resilin in beetle wings[J]. Proceedings of the Royal Society B:Biological Sciences, 2000,267(1451):1375-1381
    [6] Rajabi H, Shafiei A, Darvizeh A, et al. Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins[J]. Royal Society Open Science, 2016,3(2):160006
    [7] Appel E, Heepe L, Lin C P, et al. Ultrastructure of dragonfly wing veins:composite structure of fibrous material supplemented by resilin[J]. Journal of Anatomy, 2015,227(4):561-582
    [8] Kesel A B, Philippi U, Nachtigall W. Biomechanical aspects of the insect wing:an analysis using the finite element method[J]. Computers in Biology and Medicine, 1998,28(4):423-437
    [9] Sun J Y, Ling M Z, Pan C X, et al. Biomimetic structure design of dragonfly wing venation using topology optimization method[J]. Journal of Mechanics in Medicine and Biology, 2014,14(4):1450078
    [10] Sivasankaran P N, Ward T A, Viyapuri R, et al. Static strength analysis of dragonfly inspired wings for biomimetic micro aerial vehicles[J]. Chinese Journal of Aeronautics, 2016,29(2):411-423
    [11] Nair P, Ward T A, Viyapuri R, et al. Experimental analysis of artificial dragonfly wings using black graphite and fiberglass for use in biomimetic micro air vehicles (BMAVs)[J]. MATEC Web of Conferences, 2015,30:03001
    [12] Li X J, Zhang Z H, Liang Y H, et al. Antifatigue properties of dragonfly Pantala flavescens wings.[J]. Microscopy Research and Technique, 2014,77(5):356-362
    [13] 张孝松.基于蜻蜓翅翼的仿生微扑翼飞行器机翼的有限元分析[D].哈尔滨:哈尔滨工业大学,2006 Zhang X S. Finite element analysis on wings of flapping-wing micro air vehicles based on dragonfly wings[D]. Harbin:Harbin Institute of Technology, 2006(in Chinese)
    [14] Chen J S, Chen J Y, Chou Y F. On the natural frequencies and mode shapes of dragonfly wings[J]. Journal of Sound and Vibration, 2008,313(3-5):643-654
    [15] Sun J Y, Pan C X, Tong J, et al. Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings[J]. IET Nanobiotechnology, 2010,4(1):10-18
    [16] Zhao Y R, Tong J, Sun J Y. Microstructure of the wings of dragonfly Pantala flavescens fabriciusand finite elementanalysis of its mechanical property[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2014,8(7-8):794-799
    [17] Tamai M. Experimental investigations on biologically inspired airfoils for MAV applications[D]. Ames, Iowa:Iowa State University, 2007
    [18] Rajabi H, Ghoroubi N, Malaki M, et al. Basal complex and basal venation of odonata wings:structural diversity and potential role in the wing deformation[J]. PLOS ONE, 2016,11(8):e0160610
    [19] Li Z X, Shen W, Tong G S, et al. On the vein-stiffening membrane structure of a dragonfly hind wing[J]. Journal of Zhejiang University-SCIENCE A, 2009,10(1):72-81
    [20] Rajabi H, Ghoroubi N, Darvizeh A, et al. Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings:numerical modelling[J]. Royal Society Open Science, 2016,3(3):150610
    [21] Fauziyah S, Soesilohadi R C H, Retnoaji B, et al. Dragonfly wing venous cross-joints inspire the design of higher-performance bolted timber truss joints[J]. Composites Part B:Engineering, 2016,87:274-280
    [22] Umezu S, Tanabe N, Hashimoto H. Fabrication of comb shape of leading edge wing of dragonfly[J]. Key Engineering Materials, 2014,625:182-186
    [23] Jongerius S R, Lentink D. Structural analysis of a dragonfly wing[J]. Experimental Mechanics, 2010,50(9):1323-1334
    [24] Wang X S, Li Y, Shi Y F. Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein[J]. Composites Science and Technology, 2008,68(1):186-192
    [25] Lingaiah S, Shivakumar K, Sadler R. Electrospun nanopaper and its applications to microsystems[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2014,15(1):2-8
    [26] Darvizeh M, Darvizeh A F, Rajabi H, et al. Free vibration analysis of dragonfly wings using finite element method[J]. The International Journal of Multiphysics, 2009,3(1):101-110
    [27] Shojaei M F, Mohammadi V, Rajabi H, et al. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,16:38-54
    [28] Rajabi H, Darvizeh A, Shafiei A, et al. Experimental and numerical investigations of Otala lactea's shell-I. Quasi-static analysis[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014,32:8-16
    [29] Rajabi H, Moghadami M, Darvizeh A. Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing[J]. Journal of Bionic Engineering, 2011,8(2):165-173
    [30] Broering T M, Lian Y S, Henshaw W. Numerical investigation of energy extraction in a tandem flapping wing configuration[J]. AIAA Journal, 2015,50(11):2295-2307
    [31] Gorb S N, Kesel A, Berger J. Microsculpture of the wing surface in Odonata:evidence for cuticular wax covering[J]. Arthropod Structure & Development, 2000,29(2):129-135
    [32] Lee M. Dragonfly wings:special structures for aerial acrobatics[M]//Lee M. Remarkable Natural Material Surfaces and Their Engineering Potential. Cham:Springer, 2014:65-77
    [33] Rüppell G. Kinematic analysis of symmetrical flight manoeuvres of odonata[J]. Journal of Experimental Biology, 1989,144(1):13-42
    [34] Rajabi H, Rezasefat M, Darvizeh A, et al. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings[J]. Applied Physics A, 2016,122:19
    [35] Salami E, Ganesan P B, Ward T A, et al. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing[J]. IOP Conference Series:Materials Science and Engineering, 2016,152(1):012014
    [36] Ren H H, Wang X S, Chen Y L, et al. Biomechanical behaviors of dragonfly wing:relationship between configuration and deformation[J]. Chinese Physics B, 2012,21(3):034501
    [37] Machida K, Shimanuki J. Structure analysis of the wing of a dragonfly[C]//Proceedings of SPIE Volume 5852, Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics. Bellingham, WA:SPIE, 2005,5852:671-675
    [38] 史晓君,于海业.蜻蜓翅膀结构刚度有限元分析[J].农业机械学报,2012,43(1):224-229,223 Shi X J, Yu H Y. Finite element analysis of dragonfly wing structural stiffness[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(1):224-229,223(in Chinese)
    [39] 史晓君,于海业.蜻蜓翅膀拱形结构静力学分析[J].安徽农业科学,2014,42(5):1395-1397,1400 Shi X J, Yu Y H. Dragonfly wing structural stiffness of the finite element analysis[J]. Journal of Anhui Agricultural Sciences, 2014,42(5):1395-1397,1400(in Chinese)
    [40] Chen Y L, Wang X S, Ren H H, et al. Hierarchical dragonfly wing:microstructure-biomechanical behavior relations[J]. Journal of Bionic Engineering, 2012,9(2):185-191
    [41] 陈应龙.蜻蜓翅膀微结构与力学行为的仿生分析研究[D].北京:清华大学,2012 Chen Y L. BionicResearch on the relation between the multi-scaled structure and mechanical behavior of dragonfly wing[D]. Beijing:Tsinghua University Press, 2012(in Chinese)
    [42] Li Y, Wang X S. Investigation on characteristics of structure and simulation analysis for dragonfly wing vein[J]. Advanced Materials Research, 2008,33-37:785-788
    [43] New T H, Chan Y X, Koh G C, et al. Effects of corrugated aerofoil surface features on flow-separation control[J]. AIAA Journal, 2015,52(1):206-211
    [44] Khurana M, Chahl J. Bioinspired corrugated airfoils for micro air vehicles[C]//Proceedings of SPIE Volume 8686, Bioinspiration, Biomimetics, and Bioreplication. San Diego, California, United States:SPIE, 2013,8686:86860X
    [45] Obata A, Shinohara S, Akimoto K, et al. Aerodynamic Bio-mimetics of gliding dragonflies for ultra-light flying robot[J]. Robotics, 2014,3(2):163-180
    [46] Murphy J T, Hu H. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J]. Experiments in Fluids, 2010,49(2):531-546
  • 加载中
计量
  • 文章访问数:  489
  • HTML全文浏览量:  76
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 刊出日期:  2018-06-05

目录

    /

    返回文章
    返回