留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-RRR平面并联机构模糊PID控制系统研究

刘霞 单宁

刘霞, 单宁. 3-RRR平面并联机构模糊PID控制系统研究[J]. 机械科学与技术, 2018, 37(6): 854-858. doi: 10.13433/j.cnki.1003-8728.2018.0606
引用本文: 刘霞, 单宁. 3-RRR平面并联机构模糊PID控制系统研究[J]. 机械科学与技术, 2018, 37(6): 854-858. doi: 10.13433/j.cnki.1003-8728.2018.0606
Liu Xia, Shan Ning. Research of Fuzzy-PID Control System for 3-RRR Planar Parallel Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 854-858. doi: 10.13433/j.cnki.1003-8728.2018.0606
Citation: Liu Xia, Shan Ning. Research of Fuzzy-PID Control System for 3-RRR Planar Parallel Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 854-858. doi: 10.13433/j.cnki.1003-8728.2018.0606

3-RRR平面并联机构模糊PID控制系统研究

doi: 10.13433/j.cnki.1003-8728.2018.0606
基金项目: 

陕西省教育厅科学研究项目(16JK1339)与西安工程大学博士基金项目(BS15021)资助

详细信息
    作者简介:

    刘霞(1979-),讲师,研究方向为机构仿真设计、机构运动控制等,ning25531@163.com

Research of Fuzzy-PID Control System for 3-RRR Planar Parallel Mechanism

  • 摘要: 平面并联机构以其优异的性能在工程领域得到广泛应用,为有效提高机构运动精度,提出了基于模糊PID控制算法的3-RRR平面并联机构实时控制方法。在分析模糊PID控制原理的基础上,建立3-RRR平面并联机构模糊PID控制系统模型,搭建机构控制实验装置,实验研究了机构运动精度的实时控制。结果表明,对3-RRR平面并联机构施加模糊PID控制后,机构角位移误差最大值为2.1°,降幅达53%以上;建立的模糊PID控制系统能够用于机构运动精度实时控制,有效降低机构角位移误差,算法简单,实时性较好。
  • [1] Mousavi M A, Masouleh M T, Karimi A. On the maximal singularity-free ellipse of planar 3-RP R parallel mechanisms via convex optimization[J]. Robotics and Computer-Integrated Manufacturing, 2014,30(2):218-227
    [2] 张东胜,许允斗,侯照伟,等.五自由度混联机器人优化设计与运动学分析[J].农业工程学报,2016,32(24):69-76 Zhang D S, Xu Y D, Hou Z W, et al. Optimal design and kinematics analysis of 5-DOF hybrid serial-parallel manipulator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(24):69-76(in Chinese)
    [3] Hu J P, Yan X Y, Ma J, et al. Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot[J]. Computers and&lectronics in Agriculture, 2014,107:64-72
    [4] 高名旺,张宪民.高速平面并联机器人残余振动抑制实验[J].振动与冲击,2014,33(24):164-168 Gao M W, Zhang X M. Residual vibration suppression test for a planar parallel robot with high-speed[J]. Journal of Vibration and Shock, 2014,33(24):164-168(in Chinese)
    [5] Shin H P, Lee D. A new decoupling method for explicit stiffness analysis of kinematically redundant planar parallel kinematic mechanism[J]. Mathematical Problems in Engineering, 2015,2015:957269
    [6] 高名旺,张宪民,刘晗.3-RRR高速并联机器人运动学设计与实验[J].机器人,2013,35(6):716-722 Gao M W, Zhang X M, Liu H. Experiment and kinematic design of 3-RRR parallel robot with high speed[J]. Robot, 2013,35(6):716-722(in Chinese)
    [7] 赵磊,梁超,张德福,等.基于3-RRR结构的光学元件柔顺微动调整机构的位姿正解[J].光学精密工程,2016,24(6):1373-1381 Zhao L, Liang C, Zhang D F, et al. Forward kinematics of 3-RRR flexure parallel mechanism used in lens Micro-adjustment[J]. Optics and Precision Engineering, 2016,24(6):1373-1381(in Chinese)
    [8] 陶宗杰,安琦.考虑干涉的平面3-RRR并联机构的最优化工作空间设计[J].华东理工大学学报(自然科学版),2013,39(2):239-244 Tao Z J, An Q. Optimum design of a planar 3-RRR parallel mechanism with least interference design methodology[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013,39(2):239-244(in Chinese)
    [9] Ding W S, Mo Q J. Full control of quadrotor based on fuzzy PID hybrid control system[J]. Machine Tool & Hydraulics, 2017,45(6):1-6
    [10] Mishra P, Kumar V, Rana K P S. A fractional order fuzzy PID controller for binary distillation column control[J]. Expert Systems with Applications, 2015,42(22):8533-8549
    [11] Song S J, Moon Y, Lee D H, et al. Comparative study of fuzzy PID control algorithms for enhanced position control in laparoscopic surgery robot[J]. Journal of Medical and Biological Engineering, 2015,35(1):34-44
    [12] Khodayari M H, Balochian S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller[J]. Journal of Marine Science and Technology, 2015,20(3):559-578
    [13] Lai J G, Zhou H, Hu W S. A new adaptive fuzzy PID control method and its applicance in FCBTM[J]. International Journal of Computers Communications & Control, 2016,11(3):394-404
    [14] Zhang S, Zhang Y H, Zhang X N, et al. Fuzzy PID control of a two-link flexible manipulator[J]. Journal of Vibroengineering, 2016,18(1):250-266
    [15] 余跃庆,周刚,方道星.基于模糊PID融合的柔性机械臂振动压电主动控制研究[J].中国机械工程,2008,19(15):1836-1841 Yu Y Q, Zhou G, Fang D X. Active vibration control for flexible piezoelectric manipulator based on fuzzy-PID fusion control[J]. China Mechanical Engineering, 2008,19(15):1836-1841(in Chinese)
    [16] 曹青松,周继惠,黎林,等.基于模糊自整定PID算法的压电柔性机械臂振动控制研究[J].振动与冲击,2010,29(12):181-186,205 Cao Q S, Zhou J H, Li L, et al. Vibration control of piezoelectric flexible manipulator based on fuzzy self-tuning PID algorithm[J]. Journal of Vibration and Shock, 2010,29(12):181-186,205(in Chinese)
  • 加载中
计量
  • 文章访问数:  285
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-05
  • 刊出日期:  2018-06-05

目录

    /

    返回文章
    返回